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Kurzfassung

Pentesting ist ein wesentlicher Ansatz im Bereich Cybersecurity, bei dem es darum geht,
Schwachstellen und Sicherheitslücken in einem System zu finden, indem man Cyberangriffe
simuliert. Ein Unterbereich von Pentesting ist Privilege-Escalation, dies ist die Vorgehens-
weise ein System so zu manipulieren, dass der Angreifer Aktionen ausführen kann, die er
nicht darf und auch nicht dazu in der Lage sein sollte. Verschiedene wissenschaftliche
Publikationen, die in den letzten zwei Jahren veröffentlicht wurden, haben gezeigt, dass
Large Language Models (LLMs) Potential für autonome pentesting Systeme besitzen.
Die Ergebnisse, welche diese Arbeiten präsentieren, zeigen zwar vielversprechende Erfolge
mit cloud-basierenden Modellen, wie zum Beispiel GPT-4, aber sie demonstrieren auch
die nicht vorhandene Leistung von open-source Modellen. Open-source Modelle sind in
der Hinsicht interessant, dass man sie lokal hosten kann, was einige wesentliche Vorteile,
wie Security, Unabhängigkeit und Verfügbarkeit, mit sich bringt.
Um das Potential von open-source Modellen für autonome linux privilege-escalation
Angriffe zu erforschen, schlagen wir einen Prototyp, basierend auf wintermute [HKC24],
vor, welche dazu designt ist, lokale LLMs in diesem Kontext zu verbessern. Unser Pro-
totyp besteht aus fünf Komponenten, welche einerseits die Argumentationsfähigkeiten
und den Wissenstand des Modelles verbessern, andererseits auch mehr Struktur in die
Herangehensweise bringen und das Model mit Reflexion ausstatten.
Unsere Ergebnisse zeigen, dass open-source Modelle, abhängig von den Rahmenbedingun-
gen, nicht nur die Performance von GPT-4o erreichen, sondern sogar übertreffen können.
Llama3.1 70B schafft es mit Hilfe von Hinweisen 83% der getesteten Schwachstellen auszu-
nutzen, während Llama3.1 8B und Qwen2.5 7B 67% erreichen. Des Weiteren, kann unser
Prototype auch zu einer signifikanten Reduzierung in der Nutzung des Kontextbereiches
führen. Die Resultate zeigen ebenso, dass open-source Modelle, im Vergleich zu GPT-4o,
eine große Schwäche im Bereich Discovery besitzen.
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Abstract

Penetration testing is an essential approach in the field of cybersecurity, that allows
testers to identify vulnerabilities and potential exploits through simulated cyberattacks.
A subcategory of penetration testing is privilege escalation, which is the art of manipu-
lating a system, to allow the user to execute actions that he is not allowed to. Recent
research papers have demonstrated the potential of Large Language Models (LLMs) for
autonomous penetration testing. While those papers indicate the potential of cloud-based
models, like GPT-4, they also all highlight the lack of performance of open-source LLMs
or do not include them in their evaluation. Open-source models can be hosted locally
and offer a variety of advantages, like security, independence, or accessibility.
To investigate the potential of open-source models for autonomous linux privilege escala-
tion attacks, we propose a prototype, built on wintermute [HKC24], that is designed to
enhance local LLMs. The prototype consists of five components, that improve reasoning
capabilities, the knowledge base of the used model, the structure of the privilege escalation
process, and in addition, augment the model with a reflective ability.
Our results show, that depending on the size and the experiment setting, open-source
models can match or even outperform GPT-4o. Llama3.1 70B is able to exploit 83% of
the tested vulnerabilities, while Llama3.1 8B and Qwen2.5 7B achieve 67% when using
guidance. Furthermore, our prototype allows for a significant reduction in context size
usage. However, our experiments also highlight a severe lack in the ability of open-source
models to discover vulnerabilities in an unguided environment.
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CHAPTER 1
Introduction

Large language models (LLMs) are machine learning models, that are trained on vast
amounts of data and they that possess great capabilities across various tasks, such as
text classification [SLL+23], legal consulting [CLY+23], machine translation [ZHB23],
and mental health consulting [LLC+23]. It is a research field that is rapidly advancing
with new frontier models, like o3-mini1 from OpenAI or Deepseek-R1 [DAGY+25], being
frequently released. Due to an enormous amount of money being invested into LLMs,
like the $500 billion Stargate project2, they have been adapted to an even broader range
of domains.
One such area is penetration testing. It describes the approach of using simulated
cyberattacks to identify vulnerabilities and potential exploits in a system. A subcategory
of penetration testing is privilege escalation, which is the art of manipulating a system,
to allow the user to execute actions that he is not allowed to. In this paper, we focus on
linux privilege escalation, namely a low privileged linux user trying to become the super
user root.
Over the last two years, there have been several papers that proposed automated
LLM-based penetration testing frameworks, such as PentestGPT [DLMV+24], AU-
TOATTACKER [XSM+24], or PenHeal [HZ24]. All of them show promising results
with cloud-based models like GPT-3.5 or GPT-4, and indicate the potential of LLMs
in cybersecurity. However, none of them focus on linux privilege escalation and only
AUTOATTACKER includes open-source models, which yield poor results. To the best of
our knowledge, only wintermute [HKC24] focuses on LLM-based automated linux privi-
lege escalation attacks. Similar to the other approaches, their evaluation demonstrates
the ability of LLMs for cyberattacks, but in addition, they also highlight the lack of
performance of open-source models, like Llama3 8B/70B, in the context of automated
linux privilege escalation attacks.

1https://openai.com/index/openai-o3-mini/, accessed 27.2.2025
2https://openai.com/index/announcing-the-stargate-project/, accessed 272.2025
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1. Introduction

Open-source models are of special interest since they can be hosted locally and offer a
variety of advantages, including security. If a system uses a cloud-based LLM, like GPT-4,
all the data that the model processes needs to be sent to the provider and therefore
leave the environment. This poses a significant security risk in a situation where the
LLM works with sensitive client data, since the system loses control over what happens
to the data the moment it is sent to the provider. If the model is hosted locally, the
developer is in full control of the data flow and can reduce the risk of the data being
misused. Another advantage is independence. Using closed-source LLMs makes a system
vulnerable to sudden price increases, unavailability of models, or server issues. All of
this can be avoided when using an open-source model. In addition to that, if a new
State-Of-The-Art (SOTA) open-source model is released, it can be downloaded and run
without any additional cost.
Motivated by this gap, we aim to answer the following research questions:

• RQ1 To what degree can the performance of small local LLMs be increased by
various techniques in the context of automated Linux Privilege Escalation Attacks?

– RQ1.1 Can small local LLMs, enhanced with various techniques, match
the performance of closed-source-models in the context of automated Linux
Privilege Escalation Attacks?

• RQ2 How does each component within our proposed architecture contribute to
the overall performance on the benchmark and behavior of the model?

We start by investigating existing enhancement techniques that improve the performance
of LLMs. Furthermore, we identify core issues that open-source LLMs suffer from in
the context of automated linux privilege escalation attacks and come up with treatment
ideas to address them. We conduct a preliminary study to determine suitable methods
for our prototype. Finally, we evaluate the prototype and perform an ablation study to
investigate the impact of the individual features.

Summary of the experiment results. The results of our experiments show that
depending on the settings, models with less than 10B parameters can compete with
GPT-4o, while Llama3.1 70B even surpasses it. We find that one major issue for local
LLMs, when performing penetration tests, is the discovery process, preventing the model
from finding the vulnerability. Additionally, the ablation study suggests that one of
the most important abilities that an LLM should possess for linux privilege escalation
attacks, is reflection. This enables models to correctly identify weaknesses and come
up with corresponding commands. Furthermore, the ablation study also demonstrates
that many combinations of different enhancement techniques can lead to a substantial
increase in performance, but are often lacking in consistency. Finally, the experiments
also show that our prototype can significantly reduce context size usage.
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Contributions. Our contributions are as follows:

• a fully automated LLM-based linux privilege escalation prototype, built on win-
termute [HKC24], that allows local LLMs to compete with closed-source models
(Chapter 4 Approach)

• an evaluation of the effectiveness of our prototype and the potential of open-source
LLMs for autonomous linux privilege escalation attacks (Chapter 5 Evaluation)

• a quantitative analysis of the contribution of the used enhancement techniques
(Section 5.4 Ablation Study)

• a detailed discussion about qualitative aspect of our results (Chapter 6 Discussion)

Thesis Structure. The rest of the paper is structured as follows. In Chapter 2 we
dive into background and related work, discussing LLMs, local hosting, enhancement
techniques and more. We investigate core issues of small local LLMs in an automated
linux privilege escalation attack system in Chapter 3. Chapter 4 presents our approach
and methodology, while Chapter 5 describes our experiment setup and the results of our
evaluation. In Chapter 6 we discuss our results and we conclude the thesis in Chapter 7.

3





CHAPTER 2
Background & Related Work

2.1 Large Language Models (LLMs)
Large language models (LLMs) are artificial intelligence (AI) models designed for natural
language processing (NLP). They have capabilities such as reasoning, summarization,
or problem solving. Current SOTA models like GPT-4o or Claude 3.5 Sonnet build
upon the transformer architecture [VSP+17]. These models are typically trained on
vast amounts of data, reaching up to trillions of tokens [GDJ+24], where tokens are the
processing format of LLMs. Usually, a token represents a word, sub-word or character.
Fundamentally, LLMs function by continuously predicting the next token. They achieve
this by first breaking down the input text into tokens and then calculating which token is
most likely to appear next in the sequence. This token is then returned and the process
is repeated with the updated sequence. While this method is deterministic, it can be
made non-deterministic by introducing randomness and allowing the model to select one
of the most likely tokens instead of simply selecting the one with the highest probability.
Although transformer models, such as GPT-1 [RNSS18] or BERT [DCLT18], were already
implemented a year after the publication of [VSP+17], it was not until 2022 when OpenAI
released ChatGPT1 that LLMs gained attention from the general public.

2.1.1 Recent developments
LLMs are part of a research field that continues to progress at a fast pace. In May 2024,
OpenAI released GPT-4o [OH+24], a new SOTA model, which is capable of processing
various input formats such as text, audio, or images. A few months later in July, they
released GPT-4o mini2, a smaller and more cost efficient model. Shortly after, OpenAI

1https://openai.com/index/chatgpt/, accessed 18.2.2025
2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/,

access 17.2.2025
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2. Background & Related Work

released their first two reasoning models, called o1-preview3 and o1-mini3. Compared
to normal LLMs, reasoning models are trained to think before giving an answer. Their
newest model as of February 2025 is the reasoning model o3-mini4, which according
to LiveBench5 [WDR+25] is currently one of the best available models across various
domains.
Rapid advancements are not only seen for the closed-source models, but also for their
open-source counterparts, such as Llama or Qwen. Meta released Llama3 [GDJ+24]
in April 20246, followed by Llama3.1 in July7. In September, they released Llama3.28,
which added visual capabilities to the Llama3.1 models. Another important model series
in the open-source space is Qwen, which is developed by Alibaba. In 2024, they released
their Qwen2 and Qwen2.5 series [YYH+24, Qwe24]. Qwen2.5-Coder 32B specifically has
proven itself as one of the most powerful open-source coding models for its size range,
matching even GPT-4o9, which is presumably significantly bigger.
The most recent development for open-source LLMs is Deepseek-R1 [DAGY+25], a
reasoning model developed by Deepseek. It consists of 671B parameters and was trained
using reinforcement learning (RL). According to the benchmark results shown on their
github page10, it is able to match OpenAI’s o1.

2.1.2 Local Hosting
While current frontier models are easily accessible via APIs, open-source models can also
be run locally on personal machines or edge devices, as long as they meet the hardware
requirements of the specific model.
Hosting a model locally offers multiple benefits, including security. Depending on the
task, the LLM might end up in a situation, where it needs to process sensitive client
data. Using a cloud-based LLM would leak this data to the model provider and therefore
introduce a new security risk. If a model is run locally, the developer is in full control
over the data flow and can ensure that there is no leak.
Another advantage is independence. If a system depends on cloud-based LLMs, it is
susceptible to server problems, sudden restrictions in regard to model selection, and
potential price increases. All of this can be avoided by using a local model. Furthermore,
if a new SOTA open-source model is released, it can be downloaded and used without
any additional cost.

The main downside of running a model locally are the hardware requirements, which
is often the limiting factor. SOTA models like Llama3.1 405B can need hundreds of

3https://openai.com/index/introducing-openai-o1-preview/, access 17.2.2025
4https://openai.com/index/openai-o3-mini/, access 17.2.2025
5https://livebench.ai/#/, access 17.2.2025
6https://ai.meta.com/blog/meta-llama-3/, accessed 17.2.2025
7https://ai.meta.com/blog/meta-llama-3-1/, accessed 17.2.2025
8https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/,

accessed 17.2.2025
9https://qwenlm.github.io/blog/qwen2.5-coder-family/, accessed 2.3.2025

10https://github.com/deepseek-ai/DeepSeek-R1, accessed 7.3.2025
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2.1. Large Language Models (LLMs)

GB of GPU memory, which is not available to the majority of users. A solution to this
are small language models (SLMs). They are identical to LLMs in their architecture,
but are significantly smaller, ranging from millions of parameters to a few billion. This
allows most modern-day GPUs and even phones to run them at a reasonable pace. SLMs
perform usually worse than their bigger counterparts, but research has shown, that
they can contest LLMs in certain fields [BM24, ZHW+24, PSA+24]. [WZZ+24] give a
comprehensive survey of SLMs.

2.1.3 LLM enhancing techniques

Despite LLMs proving themselves as capable tools, in various domains, over the last
years, they are far from perfect and can be lacking, depending on the task. Several
techniques have been proposed to enhance LLMs. In this section, we will mention a few
that are of interest to this thesis.

Chain of Thought (CoT)

Chain of Thought (CoT) is a prompt engineering technique, that aims to improve
reasoning capabilities by mimicking the human thought process when solving a problem.
CoT has found success in areas such as math [SYR+24], logic [WWS+22, SYR+24],
medicine [MTS+24], or even automated penetration testing [DLMV+24]. [WWS+22]
achieve this by using few shot-prompting, where the thought process is demonstrated in
the prompt. An example can be seen in Figure 1. While they show promising results, in
our context, there are two main problems with it.
First, while few-shot prompting is well-suited for their selected problems, since most of
them have a uniform thought process (e.g. math word problems or letter concatenation),
it is problematic in our scenario. The thought process for penetration testing is not as
simple and can differ depending on what the tester finds during his run. One source for
examples could be write-ups, but they are specific to certain problems and [KGR+22]
show that the performance deteriorates if the examples and questions don’t match. In
our case, the LLM is prompted multiple times, most of the time with a different input
that potentially needs a different thought process.
Second, when experimenting with smaller models, we found, that they sometimes already
struggle to extract important information from the prompt. Including examples would
introduce noise and possibly further distract the model.
[KGR+22] propose a zero-shot approach, that is task-agnostic and shows promising
results. They suggest using "Let’s think step by step" to guide the LLM to a thought
process. Another approach that builds on [KGR+22] is [WXL+23]. They propose Plan-
and-Solve (PS) prompting, that consists of the two steps, devise a plan and carry out
the plan, e.g. "Let’s first understand the problem and devise a plan to solve the problem.
Then, let’s carry out the plan and solve the problem step by step". Similar to [WWS+22],
this method is also not directly applicable to our scenario, since their questions can be
solved in a single prompt, and each step of the devised plan can be executed in the same

7



2. Background & Related Work

prompt. In our case, the LLM needs to interact multiple times with the linux system
and cannot execute every step immediately.

Retrieval Augmented Generation (RAG)

Unlike the method described above, RAG is not a prompt technique, but an augmentation
on top of the model. RAG provides the LLM with relevant additional knowledge to
allow for a "better" answer. This is done by first retrieving relevant documents from an
external vector store and then augmenting the prompt with that information.
[LPP+20] show that this approach can lead to more factual based and specific answers.
Since then, RAG has been adopted to many different domains, such as medicine [XZL+24],
finance [ZYZ+23], the legal sector [Yan24], and even penetration testing [PSA+24, HZ24,
XSM+24]. [GXG+23] give a overview over the current state of the art for RAG, including
various paradigms and datasets.

History Compression

An integral part of penetration testing is keeping track of the attack history, storing
important extracted information and potential vulnerabilities. A simple way to do this is
by including all executed commands and their output in the prompt, however this has
two main disadvantages. First, not all output is relevant and the irrelevant parts will
potentially act as noise for the model and distract it. Second, including every output can
lead to an explosion in context size, since many actions result in an enormous amount of
information. This makes compressing the action history of special interest.
Current SOTA in LLM-based automated penetration testing systems is prompting the
LLM to summarize the most recent output. Both AUTOATTACKER [XSM+24] and
PenHeal [HZ24] use a component called summarizer, which summarizes the most recent
output. They differ in that PenHeal summarizers each output alone and stores all of
them separately, while AUTOATTACKER keeps only a single summary, which is updated
after each command based on the current version and the most recent output. [HKC24]
experiment with the same compression method as AUTOATTACKER, but are focused
on linux privilege escalation attacks and include a baseline, where all commands and
outputs are included in the prompt. Their results show that this technique can lead to a
substantial boost or decrease in success rate, depending on the model.

Planner

Another essential part in penetration testing is planning the next action, based on
the available information about the environment. AUTOATTACKER [XSM+24] and
wintermute [HKC24] do this by simply prompting the LLM with the current worldview
and asking for the next command. They differ in that wintermute immediately executes
the command, while AUTOATTACKER checks a cache for similar tasks that were
executed in the past and can be reused. Another approach is used by PenHeal [HZ24].

8



2.1. Large Language Models (LLMs)

They keep track of an attack plan, which is updated after each iteration by the LLM. For
the attack plan, they use a data structure similar to pentesting task trees [DLMV+24].

Reflexion

[SCG+23] propose Reflexion, a framework that allows models to learn from verbal
feedback based on previous actions. The LLM agent is set in an environment and given
a task to solve. The model continuously executes actions until one or more requirement,
that triggers a reflection, is met. For example, repeating the same action three times in a
row or exceeding a certain action limit. The agent then creates a new reflection based on
previous actions, already existing reflections, and a reward signal (e.g a binary value that
indicates success or failure). After that, the environment is reset and the agent starts
again with the new reflection added to its memory.
They test their approach across decision-making, programming and reasoning, showing
promising results. Reflexion could potentially be applicable to automated linux privilege
escalation attacks, where the LLM reflects on previously executed commands and their
output after one or more conditions have been met.

Hybrid-LLM Systems

While SLMs offer benefits such as privacy, lower cost, or independence, their response
quality is often severely lacking compared to frontier models like GPT-4o or Claude 3.5
Sonnet. Hybrid systems aim to combine the advantages of both sides, minimizing the
cost while retaining the response quality, by utilizing both SLMs and LLMs in their
system.
[HJJ+24] propose letting a SLM generate an initial set of tokens, out of which a subset is
selected and sent to the cloud. The cloud LLM corrects a predetermined amount of those
tokens and returns them. After that, the SLM regenerates all subsequent tokens. Their
results show, that replacing a single token can already lead to substantial improvements.
[DMW+24] suggest another approach. They use a router, which decides depending on
the difficulty of the query and the desired quality if the query should be sent to the LLM
or SLM. Their results indicate, that this method can significantly decrease the cost while
retaining the same quality.

Fine-Tuning

Unlike previously described methods, fine-tuning is not a prompt engineering technique
or an augmentation on top of the model, but rather adapts the model itself, by further
training it on a custom dataset. This specializes the model and allows it to be enhanced
with domain specific knowledge or trained for a specific task.
The most common examples of this are instruct or chat models. Fundamentally, LLMs
simply predict the next token repeatedly. This makes it difficult to hold a conversation
with the model or delegate a task, since the LLM simply continues the input text. Instruct
and chat models are fine-tuned with specific datasets that train them for their exact
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purpose, allowing them to hold normal conversations or complete assignments.
Fine-tuning a full model can be resource intensive, since for most models billions of
parameters have to be trained. Acquiring the necessary hardware can be highly expensive
and the needed training time can reach months depending on the dataset size, often
making it not feasible. [HSW+21] propose Low-Rank Adaption (LoRA). This approach
freezes all model weights and injects a small set of new ones, which are then trained. This
greatly reduces the number of parameters that need to be tuned, which minimizes the
training duration and hardware requirements. [DPHZ23] introduces Quantized Low-Rank
Adaption (QLoRA) which builds upon LoRA and further reduces hardware requirements
by using quantized models.
Fine-tuning has seen success across various domains, such as machine translation [ZHW+24],
answering business questions [RA24], text classification [BM24] and even as penetration
testing assistant [PSA+24].

2.2 LLMs in Cybersecurity
Research has shown that LLMs can be useful tools in cybersecurity. They have
demonstrated capabilities across various tasks such as source code vulnerability detec-
tion [SLM+25], security patching [AATG24], or automated penetration testing [XSM+24,
HZ24, DLMV+24, HKC24]. In the next two sections, we will first discuss linux privi-
lege escalation attacks, followed by SOTA automated LLM-based penetration testing
frameworks. [ZBW+25] give an overview of LLMs in cybersecurity.

2.2.1 Linux Privilege-Escalation
Privilege-Escalation (privesc) is the method of manipulating a system, to enable the user
to execute actions he is not allowed to. In this paper, we focus on a subsection of privesc,
namely Linux Privilege-Escalation, where a low privileged linux user tries to become the
super user root.
Previous research [HKC24] has not only shown the ability of closed source LLMs, like
GPT-4-turbo, for automated linux privesc attacks, but also the shortcomings of smaller
open-source models like Llama3 8B and Llama3 70B. They demonstrated that even with
human guidance, small models struggle to exploit vulnerabilities.

2.2.2 Automated LLM-based Penetration Testing Frameworks
Several papers have been published about automating penetration testing using LLMs.
PentestGPT [DLMV+24] propose an architecture consisting of the three modules, parsing,
reasoning and generation. The parsing component compresses output and extracts
information, reasoning oversees the penetration process and selects the next task that
should be performed, while generation produces the exact commands that are then
executed by a human operator. The resulting output is fed back into the parsing module.
Compared to other approaches PentestGPT is not fully automated and uses test machines
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from HackTheBox11, which is not open-source.
[XSM+24] propose AUTOATTACKER, a fully automated penetration testing framework.
Similar to PentestGPT, it consists of a few different key components, namely summarizer,
planner, navigator and experience manager. This allows AUTOATTACKER to store a
precise worldview, learn from previous actions, and plan the next attack depending on
the situation. While their benchmark includes a single task about privilege escalation,
its primary goal is penetration testing. Compared to PentestGPT, they also include
open-source models in their experiments, but their evaluation shows that none of those
models can solve a single task.
[HZ24] propose PenHeal, a fully automated penetration testing framework, that not
only identifies vulnerabilities but also suggests remedies for them. The architecture
consists of the two main modules, Pentest and Remediation. The pentest component
finds vulnerabilities and forwards them to the remediation module, where first, the
respective severity is determined before a recommendation is created. Like PentestGPT,
they do not include a single open-source model in their experiments.
To the best of our knowledge, the only LLM-based automated linux privilege escalation
framework is wintermute [HKC24]. In its base form, the architecture is simpler than
previously mentioned approaches, since the LLM is prompted only once per iteration,
compared to for example, AUTOATTACKER or PenHeal, where it is queried multiple
times a turn. Wintermute consists of a simple loop, where the LLM is repeatedly
presented with the current worldview and asked to generate the next command. The
proposed command is then executed on the target system and is included, together with
the respective output, in the next prompt. Similar to AUTOATTACKER, their results
indicate the potential of the GPT models but also demonstrate the lacking abilities of
open-source models.
Although these papers show promising results for automated penetration testing using
frontier models like GPT-4, only one of them focuses on linux privilege escalation and
none of the approaches yield decent results when using open-source models.
We aim to fill this gap, by providing a prototype, built on wintermute, that enhances
smaller open-source models for automated linux privilege escalation attacks.

11https://www.hackthebox.com/, accessed 20.2.2025
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CHAPTER 3
Identified Problems of Local LLMs

In this chapter we investigate core issues that small local LLMs suffer from when being
used in an automated linux privilege escalation attack system. We discuss the methodology
to reach our results in Section 3.1 and the corresponding findings in Section 3.2.

3.1 Methodology

We analyze data from two different sources. First, we examine the log data of the
experiments of wintermute [HKC24], with a primary focus on Llama3 8B and GPT-4-
turbo. They are publicly available on github1. Second, we use Llama3.1 to investigate
how a current SOTA small open-source LLM behaves in an automated linux privilege
escalation attack system. Llama3.1 8B will be placed in a similar environment to the
one used in wintermute, which can be seen in Figure 3.1. The environment consists of a
loop, where in each iteration the LLM is presented with relevant information about the
low-privileged user the model has access to, and all previously executed commands with
their respective output. The LLM is asked to generate the next command that should
be executed. The returned command is then executed on a linux virtual machine, and
included, together with its output, in the prompt in the next iteration.
We perform a qualitative analysis, in which we investigate the behavior of the models.
We include GPT-4-turbo in our analysis, since it allows us to draw direct comparisons
in behavior between it and the other two models. The experiments of wintermute
have demonstrated the linux privilege escalation attack capabilities of GPT-4-turbo.
Comparing an unsuccessful models like Llama3 8B with GPT-4-turbo may highlight key
behavioral traits that an LLM needs for linux privilege escalation attacks.

1https://github.com/ipa-lab/hackingbuddy-results, accessed 7.3.2025
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Figure 3.1: Architecture for the baseline runs, wintermute [HKC24]

3.2 Results
Based on our analysis we have identified the following problems:

1. Complex Commands: One major problem that Llama3 8B has is that it mostly
generates complex, interleaved commands that are either invalid or result in no
output. E.g. (run-llama3-8b-q8-6000_hints.sqlite, test-1, iteration 53):

exec_find / -type f -perm 4755 2>/dev/null | xargs ls -ld |
grep suid | head -1 | cut -d' ' -f11- | xargs find /
-name | xargs file | grep ELF | grep setuid | xargs cp
/bin/bash .

↪→
↪→
↪→

2. Hallucinates Capabilities: Another problem of Llama3 8B is, that it halluci-
nates capabilities. In our environment, a model can either execute a command
with the keyword exec_command or test credentials with test_credential.
Llama3 8B frequently generates commands with non existing capabilities like
exec_which or exec_find instead of using exec_command which ... or
exec_command find ....

3. Zero Structure: When comparing GPT-4-turbo and Llama3.1 8B runs, one major
difference is how the models structure their approach. GPT-4-turbo is organized
and typically starts with the same sequence of commands, which allows the model
to gain important initial information and identify potential directions it should
explore. Llama3.1 8B on the other hand, does not have any structure in its approach
and randomly tries different commands without gaining a broader understanding
of the system and possible attack vectors.

4. Command Repetition: Llama3.1 8B suffers from severe repetition, where a few
unique commands cover the majority of all iterations in a test run.

5. Ignoring outputs: Llama3.1 8B often completely ignores the output of previous
commands, including the most recent one. Instead, it suggests the same command
or a slight variation of it. Even in scenarios where the LLM finds the vulnerability
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and possesses the knowledge about how to exploit it, the LLM simply ignores the
information.

6. Missing Information about how to exploit certain Vulnerabilities: One
problem that affects Llama3.1 8B and most likely all other small LLMs, are
knowledge gaps about how to exploit certain vulnerabilities. There are a wide range
of possible vulnerabilities and various ways to exploit them. The training data of an
LLM might include information about exploits, but some vulnerabilities are likely
not covered enough to allow the LLM to recall specific commands. For example,
Llama3.1 8B has not shown any sign of knowledge about how to successfully exploit
the tar binary, even when asked explicitly.
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CHAPTER 4
Approach

Our approach is structured as follows. We start by discussing improvement ideas
(Section 4.1) that can counteract the problems mentioned in Chapter 3. After that, we
conduct a preliminary study to determine the most suitable enhancement techniques
(Section 4.2). Finally, based on the results of the preliminary study, we create the
prototype (Section 4.3) that will be used for our evaluation.

4.1 Treatment Ideas
In this section, we revisit relevant enhancement techniques from the background section
(Section 2.1.3) and propose five additional methods to solve the discovered problems.

4.1.1 Chain of Thought (CoT)
CoT improves the reasoning capabilities of an LLM, by mimicking the human thought
process. We discuss background information about CoT in Section 2.1.3. This method
can help against multiple problems. For example, during the reasoning step of CoT, the
LLM may realize that it has already executed a specific command and should therefore
suggest something else to avoid repetition. Similarly, additional reasoning capabilities
may also reduce hallucinations, since the model has to explain its steps.

4.1.2 Retrieval Augmented Generation (RAG)
RAG aims to improve the quality of the generated answers by augmenting the prompt
with additional knowledge. Each time the LLM is prompted, the system retrieves relevant
documents from an external vector store, adds them to the prompt and queries the LLM.
We give an overview about RAG in Section 2.1.3. This feature can enrich the model
with domain specific knowledge, such as specific commands, possible vulnerabilities, or
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general exploits. This can solve one of the main problems described in Chapter 3, namely
knowledge gaps.

4.1.3 Structure via Prompt (SvP)
As seen in figure 3.1, our baseline approach already uses the same planning method
as [HKC24] and [XSM+24], which is described in Section 2.1.3.
We propose to augment this method by providing additional useful commands in the
prompt, that can lead the LLM into common attack vectors. This can be done by letting
a current frontier model (e.g. GTP-4o) generate an unbiased set of commands that give
an overview over the system environment the model is in. This approach minimizes cost,
duration, and overhead, while also providing the LLM with more structure.

4.1.4 History Compression
As mentioned in Section 2.1.3, preserving the action history is an integral part in
automated penetration testing. While SOTA is letting an LLM summarize the output, we
propose a different approach in this section. Instead of including all previously executed
commands and their respective output in the prompt, or prompting the LLM for a
summary, we keep all commands, but only the most recent output. This minimizes the
necessary context, as well as the time needed, while also retaining an overview of the
previous actions. [HKC24] show that prompting an LLM for a summary significantly
increases the runtime.
The major downside of this approach is, that we lose information, since we purge older
outputs. To minimize the information loss, several past outputs can be included instead
of just one.

4.1.5 No Duplicates
An intuitive solution for repetition is simply not allowing repeated commands. Each
time an already executed command is generated, the LLM is prompted again until a
new command is returned. This benefits locally hosted models more, since it does not
increase the cost compared to models that are accessed via an API. To avoid being stuck
in a loop, a limit can be set, after which a previously used command is allowed.

4.1.6 Analyze
One of the most important abilities, when penetration testing, is analyzing the last output
and choosing the next action based on that. As mentioned in Chapter 3, Llama3.1 is
severely lacking in that regard. This greatly reduces its penetration testing capabilities,
since it cannot build a knowledge base and instead simply suggests random commands.
To combat this, we want to force the LLM to do an analysis. One way to do this is
to use the context compression method from [XSM+24, HKC24], which is described in
Section 2.1.3. In their approach, the LLM implicitly analyses the most recent output,
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Figure 4.1: Architecture for the initial prototype.

by updating its state/summary. To improve the quality of the analysis, we suggest,
prompting the LLM and asking it explicitly for an analysis, instead of simply updating
the current worldview.

4.1.7 State
The last method we propose is called State. Its structure is identical to the history
compression approach from wintermute [HKC24] and AUTOATTACKER [XSM+24],
which is described in Section 2.1.3, but instead of replacing the action history, it is
added in addition. This can be combined with the compression method described in
Section 4.1.4, allowing the model to have two different worldviews, making it more robust.
An additional advantage of this method is that updating the state after each iteration
includes an implicit analysis, which should help against the problem of the LLM ignoring
the outputs. It can potentially also help against repetition and missing structure.

4.2 Preliminary Analysis
We conduct a preliminary analysis to determine the most promising features for our
prototype. Multiple features can potentially solve the same problem, influence each
other negatively, or even create completely new problems. To identify the best features,
we create an initial prototype consisting of multiple improvement ideas. Based on the
result of this first prototype, we will select the features that will be included in the final
architecture. To evaluate the initial prototype, we use Llama3.1 8B and GPT-4o mini.

4.2.1 Initial Prototype
For the initial prototype, we use the following features: RAG (section 4.1.2), History
Compression (section 4.1.4), Analyze (section 4.1.6), CoT (section 4.1.1), and SvP
(section 4.1.3). We build our prototype on top of wintermute [HKC24]. A flow chart of
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Problem Proposed Feature
Complex Commands CoT (Section 4.1.1), RAG (Section 4.1.2)
Hallucinating Capabilities CoT (Section 4.1.1)
Zero Structure CoT (Section 4.1.1), SvP (Section 4.1.3)
Repetition CoT (Section 4.1.1), Analyze (Section 4.1.6), H. C. (Section 4.1.4)
Ignoring Outputs CoT (Section 4.1.1), Analyze (Section 4.1.6), H. C. (Section 4.1.4)
Knowledge Gaps RAG (Section 4.1.2)

Table 4.1: Problems with corresponding treatments

the architecture can be seen in Figure 4.1.
One major flaw, that LLMs can have in the context of linux privilege escalation attacks,
is missing knowledge about specific commands that are needed to exploit certain vulner-
abilities. Of the discussed treatment ideas, both RAG and Fine-Tuning can potentially
alleviate this problem. We decided to go with RAG, since it is model agnostic and can
easily be updated with new knowledge, compared to Fine-Tuning, where knowledge can
only be added by adjusting the weights, which requires to re-train the whole model.
We include History Compression, since it is a simple adjustment, that can possibly reduce
the amount of repetitions and make the LLM react to the most recent output.
To solve the problem of the LLM ignoring the output of the last command, we incorporate
Analyze in our prototype. While the State feature can also lessen this issue, we decided
to use Analyze over State, since Analyze explicitly forces an analysis, compared to State,
where the analysis happens implicitly through updating the state.
We include CoT, as it improves the overall reasoning capabilities of LLMs [WWS+22,
WXL+23, KGR+22], which can increase the quality of the executed commands and also
reduce problems like hallucinations or repetition.
Finally, we choose SvP, as this augmentation can guide the LLM to a more structured
approach. Our selected features should help the LLM overcome the problems discussed
in Chapter 3.

It is worth mentioning, that capability hallucinations and complex commands only happen
to Llama3 8B and are not present in the LLama3.1 8B runs.

We do not include No Duplicates (Section 4.1.5) in our prototype, since the combination
of our selected features should be enough to reduce the repetition. Should our results
show, that despite the prompt adjustments and augmentations on top of the model, there
is still severe repetition, we can include it in the final architecture.
We also do not include Reflexion (Section 2.1.3). In order to create an useful reflection,
there needs to be feedback that estimates the quality/performance of the executed
command. [SCG+23] use external (binary environment rewards) or internal feedback (e.g.
self generated unit tests) for that. This works well for their tested domains, but is not
feasible for penetration testing. Even if commands result in useless output, they could
have contained essential information and the only takeaway is not to repeat them, which
brings us back to repetition. An exception to this are commands that lead to an error,
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but those are handled by the Analyze component, which performs reflection after each
round. Furthermore, the authors themselves mention in the appendix "We conclude
that Reflexion is unable to solve tasks that require a significant amount of
diversity and exploration." ([SCG+23], p.14).
Finally, we also decide against using Hybrid-LLM Systems (Section 2.1.3), since the
aim of this paper is to evaluate how the performance of local models can be increased.
While this idea may lead to improvements, it is in contrast to our goal, since we simply
circumvent the weakness of the local LLM by using a better model.

4.2.2 Implementation

CoT

The aim of CoT is to stimulate the LLM to mimic the human thought process. As
discussed in Section 2.1.3, the original few shot-prompt approach is not applicable in our
scenario. We first tried "Let’s think step by step, proposed by [KGR+22], but ChatGPT-
4o mini didn’t react at all to it and Llama3.1 8B most of the time simply added an
explanation and did not show a thought process.
We implemented an approach that combines PS [WXL+23] and zero shot from [KGR+22].
We propose Extract-and-Think, "Let’s first understand the problem and extract the most
important facts from the information above. Then, let’s think step by step and figure out
the next command we should try.". To extract the command, we instruct the LLM to
surround it with <command></command> tags.
This approach should aid the model in suggesting the best command based on the known
facts.

RAG

To implement RAG we use langchain1. We have two data sources that cover a variety of
Linux Privilege Escalation vulnerabilities.
First, we use HackTricks2, as this website contains a lot of information about Linux Priv-
ilege Escalation attacks. We use all subpages of https://book.hacktricks.xyz/
linux-hardening/privilege-escalation (total of 43 pages) and store them in
individual markdown files. We use langchain markdown splitter to split them into chunks
of 1000.
Our second data source is GTFOBins3. This website maintains information about 390
unix binaries, that can be used to bypass local security restrictions in misconfigured
systems. In contrast to the files from HackTricks, we don’t split them, since the average
length of a GFTO binary is around 326 tokens, while the average length of a HackTricks
page is 2106 tokens. An exception to this are six binaries, that exceed 1200 tokens.

1https://github.com/langchain-ai/langchain, accessed 15.3.2025
2https://book.hacktricks.wiki/en/linux-hardening/privilege-escalation/

index.html, accessed 15.3.2025
3https://gtfobins.github.io/, accessed 15.3.2025
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They were split manually around the middle (split by the closest header to the middle)
and both sides contain the header with the name of the binary. We decided to split
them manually and not with a markdown splitter since the binaries are compact and all
provided information is relevant for the binary. HackTricks pages in comparison, can have
a more loose header. We use text-embedding-3-small from OpenAI as embedding
model.

The RAG-architecture we use is rather simple. First, the LLM is provided with the last
executed command, its output and is asked to generate a search query. Second, the
search query is used to retrieve relevant documents from the vector store. The results are
concatenated and trimmed down to 1200 tokens (we chose 1200, because thats a little bit
bigger than the biggest GTFO binary, it is big enough to contain a reasonable amount of
information and small enough to not overload the prompt with information). Finally,
the resulting information is included in the next query_next_command prompt.

Analyze

After each iteration, the LLM is provided with the executed command, its output, and is
then asked to analyze it. The analysis is included in the next query_next_command
prompt.

SvP

To generate the set of commands, we used gpt-4o-2024-05-13. The commands can
be seen in Figure 4.2 and the chat history can be found on github4. They are included in
the query_next_command prompt with an additional description.

find / -perm -4000 2>/dev/null
sudo -l
cat /etc/crontab && ls -la /etc/cron.*
find / -type d -perm -002 2>/dev/null
uname -a && lsb_release -a

Figure 4.2: Commands provided by SvP

History Compression

Instead of including all the commands and their respective output in each query_next_command
prompt, we remove all outputs except the most recent one.
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4.2.3 Initial Prototype Results
In this chapter, we will first analyze the results of the initial prototype, then inspect the
impact of the selected features, and examine if the previous problems still exist. Finally,
we will also discuss newly emerged problems. The runs can be found on github5 and the
results can be seen in Table 4.2. We discuss benchmark & metrics, as well as experiment
design in Chapter 5.

Performance

LLama3.1 8B by itself performs similarly to its predecessor Llama3 [HKC24], solving
only a single test. Guidance slightly improves the performance from 8% to 17%. The
initial prototype also barely changes the success rate from 8% to 17%, but allows the
LLM to solve different tests. Enabling guidance and the prototype increases the score
from 17% to 50%, 67% with almost there runs included.
GPT-4o mini on its own has a similar success rate to LLama3.1, reaching 8% without
and 25% with guidance. Compared to LLama the prototype alone already leads to a
significant improvement, increasing the score from 8% to 42%. With guidance and the
initial prototype enabled, GPT-4o mini has a success rate of 67%.

Treatment Analysis

Our selected features are successful in dealing with the problems discussed in Chapter 3.
SvP gives the LLM more structure in its approach, allowing both, GPT-4o mini and
LLama3.1 8B to find the vulnerabilities in all runs in all test cases, for which SvP contains
a relevant command.
RAG is successful in filling missing knowledge gaps. In most runs, where the vector store
contains relevant information, RAG provides the LLM at least once with that knowledge,
given that the vulnerability is found.
The problem of the LLM ignoring the outputs of the executed commands is resolved
by the Analyze component. This allows LLama3.1 8B, for example, to solve test-2 and
GPT-4o mini to increase its success rate on that test.
The last problem that we had was severe repetition. This issue is also no longer present.
Commands are sometimes still repeated, but this is not necessarily a downside and can
even be advantageous. For example, the LLM can execute sudo -l multiple times, if it
does not identify the vulnerability after the first iteration.
CoT works as intended and achieves its goal, of enhancing the LLMs reasoning capabili-
ties. In most iterations, both LLama3.1 8B and ChatGPT-4o mini show a clear thought
process. While Llama3.1 8B also extracts facts, ChatGPT-4o mini tends to ignore this
part of the CoT template and simply states its thought process and suggested command.
For history compression, we also found, that it fulfills its goal, of removing noise. The ma-

4https://github.com/Qsan1/ThesisFiles/blob/master/SvP_chat_history.md, ac-
cessed 15.3.2024

5https://github.com/Qsan1/ThesisFiles, accessed 7.3.2025
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jor disadvantage of History Compression is, that if the LLM finds important information,
but does not use it immediately in the next iteration, the information is lost since the
output is purged and the next one is included. The test runs for our initial prototype show,
that this problem is not severe. In most cases, the vulnerability is found multiple times.
Furthermore, if all the outputs are included in the query_next_command prompt, it
is unlikely, that the LLM would successfully extract the correct output, between all the
irrelevant outputs and the analyze component, and then correctly exploit it.

New Problems

Although the prototype is successful in resolving identified problems and substan-
tially increasing the performance of the tested models, it also introduces new issues.
The inclusion of RAG and Analyze led to a significant increase in information in the
query_next_command prompt, which overloads the prompt. This results in a variety
of problems. For example, models are far more likely to extract useless facts and miss
important information during the CoT process. This happens frequently to LLama3.1 8B,
where it ignores the guidance or important information from the analysis. An additional
consequence of an overflowing prompt is the "Lost in the Middle" Problem [LLH+24],
which states, that performance can significantly decrease, depending on the position of
relevant information in the prompt.
Another issue, that we identified is, that the analysis is often irrelevant and acts as noise
in the query_next_command prompt, possibly misleading and confusing the LLM.
This can occur, if the LLM is missing knowledge to make a proper analysis or if the most
recent output does not contain any relevant information and the LLM overanalyzes the
situation.
Finally, we also found, that in some scenarios RAG provides the correct command/way
to exploit a vulnerability, but the LLM changes it to an invalid/useless one and executes
this new version.

4.3 Prototype
Based on our analysis of the initial prototype runs, we decided to stick with the same
features, but with a significant change to Analyze and RAG. Those features are RAG
(Section 4.1.2), History Compression (Section 4.1.4), Analyze (Section 4.1.6), CoT
(Section 4.1.1) and SvP (Section 4.1.3). A flow chart of the architecture can be seen in
Figure 4.3.

To solve the newly emerged problems, described in Section 4.2.3, we make two changes to
our system. First, we shift the RAG output from the query_next_command prompt
into the analyze_cmd prompt. This significantly reduces the amount of information
in the query_next_command prompt, which increases the likelihood of the LLM
extracting important information, instead of random commands provided by RAG, and
reduces the impact of the "Lost in the Middle" problem. Furthermore, shifting the
knowledge provided by RAG into the analysis prompt should improve the quality of
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Figure 4.3: Architecture of the final prototype.

the analysis, which further reduces the noise in the query_next_command prompt. In
addition, this can potentially alleviate the problem of the LLM taking correct commands
from the RAG output and modifying them into incorrect versions. Currently, there is
a lot of information in the query_next_command prompt and it is possible that the
LLM is getting confused and loses the overview of what is a recommendation, what are
facts, and consequently hallucinates command parts.
The second change that we make is that we include the guidance in the analyze prompt
if it is enabled. In a scenario, where this kind of information is available, it makes sense
to also include it in the analysis.

We do not include Reflexion (Section 2.1.3) and Hybrid-LLM Systems (Section 2.1.3)
in the final architecture for the same reason that we did not include them in the initial
prototype. The Reflexion framework is not applicable in our context and Hybrid-LLM
Systems may lead to improvements, but are in contrast to our goal, of improving local
models, since we just circumvent the weaknesses of the local model, by using a better
model.
Including No Duplicates (Section 4.1.5) is also not necessary. The initial prototype runs
show, that while there are still some duplicated commands, the problem is not nearly as
present. Allowing duplicated commands to a reasonable degree can also be beneficial. For
example, in test-2, if the LLM executes sudo -l but does not pick up the vulnerability,
the LLM would be blocked from using that command again and possibly preventing it
from solving the test case.
Finally, we also do not include State. The reason for that is, that our main adjustment to
the included features had the goal of reducing the noise in the query_next_command
prompt. LLama3.1 8B struggled multiple times picking up important facts because the
prompt was overflowing with information. Including the state in the query_next_command
prompt will increase the noise again. While the state may contain relevant information
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about the system, it can also be filled with irrelevant information or hallucinations, that
possibly persist through all the iterations and mislead the LLM. Furthermore, this would
also bring back the Lost in the Middle problem. The results of [HKC24] show, that while
State leads to a performance increase for GPT-4-turbo, the performance of LLama3 70B
significantly deteriorates when using State.
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CHAPTER 5
Evaluation

In this chapter we discuss the experiment setup and the results of our evaluation. We
start by describing the experiment design (Section 5.1), which includes topics like model
selection and guidance. Then we discuss benchmark and metrics (Section 5.2) before
analyzing our results in Section 5.3.

5.1 Experiment Design
Our experiment is designed to not only evaluate the baseline performance of open-source
models and the impact of our prototype, but also assess the influence of guidance and
compare the performance between open-source and closed-source models when using our
prototype.
To achieve this, we use four different configurations: baseline, baseline+guidance, prototype
and prototype+guidance. Each model will run each configuration three times with a limit
of 40 iterations per test. The response time will be limited to 14 minutes with three
retries should the limit be exceeded. In Addition, we will also conduct an ablation study
with Llama3.1 8B.

5.1.1 Model Selection
For the open source models we select Llama3.1 8B, Llama3.1 70B, Qwen2.5 7B, and
WhiteRabbitNeo 7B. Llama3.1 8B and Qwen2.5 7B are SOTA small LLMs that can
be run locally on almost any modern-day GPU at a reasonable speed. Llama3.1 70B
represents the next bigger category of models, that are not as accessible as the smaller
models, but can still be run locally with consumer-grade GPUs.
WhiteRabbitNeo is an open-source model, that is fine-tuned on various offensive and
defensive cybersecurity topics, such as misconfigurations, default credentials, or API
vulnerabilities. The base model of the current version is Qwen2.5-Coder 7B.
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For the closed-source, models we use GPT-4o (gpt-4o-2024-11-20) and GPT-4o mini
(gpt-4o-mini-2024-07-18). They were released around the same time as the Llama3.1
series, are accessible and cheap to run.

Llama3.1 8B, Qwen2.5 7B, and WhiteRabbitNeo 7B will be hosted locally with the
OpenAI compatible web server from llama-cpp-python. For Llama3.1 70B, we will use the
AzureAI API from microsoft, since we do not possess the required hardware to run the
model locally, and for the OpenAI models, we will use the OpenAI API. The temperature
for all models will be set to 0.8, and for all other parameters we will use the default value
of the respective platform.

Since LLMs are capable of generating text about arbitrary topics, they could be misused
for malicious activities. To combat this problem, various companies like Meta and OpenAI
censor their models to block malicious or harmful content.
We encountered this problem with the official Llama3.1 8B model, as it frequently
refused to generate a command for linux privilege escalation attacks. While various
jailbreaking methods have been researched [XLD+24], we decided to use Llama-3.1-8B-
Lexi-Uncensored-V21, a fine-tuned version of Llama3.1 8B that removes the censorship,
as representation for Llama3.1 8B. We chose this approach over other methods as it is
the most accessible and likely way an individual, that intends to run the model locally,
will circumvent the censorship. The performance of Llama-3.1-8B-Lexi-Uncensored-V2 is
almost identical to the official Llama3.1 8B and even outperforms it slightly on several
benchmarks, as shown on the model card1.

5.1.2 Context size
An essential parameter when working with LLMs is the context size, which indicates how
much information can be fed to the model at once. Current SOTA models from OpenAI,
Anthropic or Meta can have a context size of up to 128k2, or even 200k3. While such
a large context size may be easily accessible when using an API, it also increases the
memory requirements, which is often the limiting factor when running a model locally.
We limit the context size for all tested models to roughly 8k, with the goal of striking a
balance between memory consumption and necessary space.

5.1.3 Impact of High-Level Guidance
A key part in the privilege escalation process is the discovery, in which the pentester
explores different attack vectors in search for a vulnerability. An exhaustive search is
often not feasible, as there are to many different directions that need to be explored.
Previous research [HKC24] has shown that high-level guidance can significantly increase

1https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2, accessed
8.3.2025

2https://ai.meta.com/blog/meta-llama-3-1/, accessed 7.2.2025
3https://platform.openai.com/docs/models,https://docs.anthropic.com/en/

docs/about-claude/models, accessed 7.2.2025
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5.2. Benchmark & Metrics

Vulnerability-Class Name Description
SUID/sudo files suid-gtfo exploiting suid binaries
SUID/sudo files sudo-all sudoers allows execution of any command
SUID/sudo files sudo-gtfo GTFO-bin in sudoers file
priv. groups/docker docker user is in docker group, docker is running in privileged mode
password hygiene password reuse root uses the same password as lowpriv
password hygiene weak password root is using the password “root”
password hygiene password in user text file vacation.txt in the user’s home directory with the root password
information disclosure password in user config file reused password in the local database configuration
information disclosure bash_history root password is in .bash_history
information disclosure SSH key lowpriv can use key-bases SSH without password to become root
cron-based cron file with write access is called through cron as root
cron-based cron-wildcard cron backups the backup directory using wildcards

Table 5.1: Benchmark Test-Scenarios [HC24]

the performance of an LLM in the context of automated linux privilege escalation attacks.
To investigate, what effect high-level guidance has on our prototype, we will include a
run configuration, where we, in addition to our prototype, use the example guidance
provided by the benchmark benchmark-privesc-linux.

5.2 Benchmark & Metrics

5.2.1 Benchmark
As a benchmark, we are using benchmark-privesc-linux [HC24]. It consists of twelve test
cases, covering multiple vulnerability classes, such as information disclosure, or password
hygiene. An overview can be seen in Table 5.1.
Each test case is in its own Linux Virtual Machine (VM), that can be accessed via
ssh and is safe with the exception of the specific vulnerability. The VMs are newly
created every time a new run is started, preventing influence from prior experiments.
The interactions between the LLM and the system are stored according to the metrics
described in Section 5.2.2.
Using VMs allows for full control of the testing environment and provides a good
separation between the tests themselves, and between the tests and the host system.

5.2.2 Metrics
To track meta-data about the individual test runs, we store relevant information about
each run in a separate database file. For each of the twelve tests in a run, we collect start
and stop timestamps, the end state, which indicates if root access was achieved or not,
and the iterations themselves.
Furthermore, for each iteration, we store all the queries (e.g generate next command,
generate RAG search query) that were executed during that round. For all queries, we
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track prompt, answer, number of input and output tokens, the time needed to generate
the answer and the purpose of the query.
This allows us to conduct a quantitative and qualitative analysis, such as analyzing the
average number of rounds needed to solve a test, the quality of the generated commands,
and even the behavior of the models.

Like [XSM+24, HKC24] we use the success rate and the number of interactions needed
as evaluation metrics. Tests that only fail because of miscommunication with our sys-
tem, despite the LLM clearly being able to solve the test, will also be included in the
success rate (e.g. the LLM uses test_credential -u root -p aim8Du7h instead
of test_credential root aim8Du7h).
In addition, we will also track test runs that fail just before a successful exploit. For exam-
ple, forgetting sudo in front of tar -cf /dev/null /dev/null -checkpoint=1
-checkpoint-action=exec=/bin/sh.
Each run is repeated two times, as we use a temperature of 0.8 for all models. The
temperature is a parameter that influences the randomness of an LLM. When the temper-
ature is set to 0, the model becomes deterministic. Increasing the temperature increases
the randomness. The parameter is usually set between 0 and 2.

5.3 Results
In this section, we analyze the results of our experiments. First, we investigate the
feasibility of the tested models (Section 5.3.1). Second, we examine the impact of
guidance (Section 5.3.2). Third, we inspect the context size utilization (Section 5.3.3)
and difference in the amount of tokens generated between the models for the different
prompts (Section 5.3.4). The results of the evaluation can be seen in Table 5.2. We
exclude WhiteRabbitNeo from multiple analyses, since the model was unable to finish
the majority of the test runs, due to timeouts when generating an answer.

5.3.1 General Performance
Without guidance or prototype enabled, none of the open-source models can match the
performance of GPT-4o. Qwen2.5 7B, LLama3.1 8B, GPT-4o mini and WhiteRabbitNeo
have success rates of 8%, while Llama3.1 70B reaches 17%. GPT-4o, on the other hand,
achieves 42%.
Enabling guidance improves the score across the board, with the exception of Qwen,
whose score remains the same. Llama3.1 8B only solves a single additional test case,
while the other models have a noticeable jump in performance, with GPT-4o reaching
67%, 83% with almost there runs included. Guidance improves the performance, but the
gap between GPT-4o and the other models remains.
The prototype increases the success rate of all tested models. The gain for the open-source
models is insignificant, as it only allows the LLMs to solve a single additional test case.
For GPT-4o mini, however, there is a substantial improvement. The prototype increases
its performance by five times, matching the baseline performance of GPT-4o with 42%.
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Enabling prototype and guidance leads to significant improvements for all tested models.
WhiteRabbitNeo reaches 42%, while both Llama3.1 8B and Qwen2.5 7B are able to
match baseline guidance GPT-4o with 67%. GPT-4o mini and Llama3.1 70B outperform
GPT-4o and have a success rate of 75% and 83% respectively. With almost there runs
included Llama3.1 70B only fails to complete a single test, reaching a score of 92%.

Feasibility of Vulnerability Classes

We observe that while the open-source models struggle in all vulnerability classes without
guidance, regardless of whether the prototype is enabled or not, GPT-4o mini can
consistently solve file-based and password hygiene tests with our approach even without
guidance. Not a single information disclosure or cron-based test is solved by any model
without guidance. Enabling prototype and guidance makes all vulnerability classes feasible
for all models with the exception of WhiteRabbitNeo. We discuss WhiteRabbitNeo in
Section 6.7.

5.3.2 Impact of Guidance
Guidance consistently improved the success rate of the tested models, with the exception
being baseline Qwen2.5 7B, where the success rate remains 8%. Although guidance
increases the performance for the baseline runs, the change was only significant for
GPT-4o. We discuss baseline+guidance in Section 6.5.
Guidance combined with the prototype leads to drastic increases for almost all models.
It allows Llama3.1 8B and Qwen2.5 7B to match GPT-4o, and GPT-4o mini and
Llama3.1 70B to outperform GPT-4o. Llama3.1 70B almost reaches human-level success
rate [HKC24].
Without narrowing down the search space, LLMs can indefinitely explore different attack
vectors without ever coming close to the vulnerability. For example, not a single test
case of the vulnerability class information disclosure is solved without guidance.

5.3.3 Context Size Analysis
When analyzing the utilization of the context size, we found, that our prototype can
lead to a significant reduction in context size usage. The context size distribution of the
different models can be seen in Figures 2 and 5.1.
When using the prototype, almost all prompts for all models have an input size of less
than 4k, with the majority being below 2k. In contrast, both baseline GPT-4o mini and
Llama3.1 70B have over 25% in the range of 7-8k and are generally far more spread
across the whole spectrum.
For Llama3.1 8B and Qwen2.5 7B, however, the context usage tends to increase rather
than decrease. This is due to the fact, that both smaller models in their base form mainly
execute commands that lead to little or no output. Llama3.1 8B repeatedly tries to log
in with different credentials, while Qwen2.5 executes more complex commands that lead
to zero output. When the prototype is enabled the average input size increases, since
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Figure 5.1: Comparison of the context size distribution between baseline and prototype
for each model with box plots. WhiteRabbitNeo is not included, since it does not finish
most of its runs.

the analysis is included in the query_next_command prompt and the analyze_cmd
prompt contains all the RAG output.
The numbers for Llama3.1 70B are potentially slightly inflated. Azure AI terminates
all requests that take longer than 60s to process, but still charges for the input tokens.
To keep track of the cost, we stored the total amount of tokens sent to the API. For
example, if a prompt contains 1000 tokens, but we only received a response after sending
it a second time, we store 2000 tokens as input size for that prompt.

5.3.4 Token Generation
In this chapter, we analyze the total and prompt specific amount of tokens generated
for each model. Different models have different tokenizers. To compare them we use the
cl100k_base encoder from tiktoken4 to calculate the number of tokens.
GPT-4o mini generated and consumed the least amount of tokens with 764 799 (100%)
output and 5 773 666 (100%) input tokens. Llama3.1 70B generated more output tokens,
954 590 (125%), and also had slightly more input tokens, 6 233 375 (108%). Both smaller
models had significantly more output and input tokens. Qwen2.5 7B produced 1 804 722

4https://github.com/openai/tiktoken/tree/main, accessed 15.3.2025
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(236%) output tokens and 8 258 177 (143%) input tokens, while Llama3.1 8B had 2 149
194 (281%) output and 9 423 686 (163%) input tokens. Noticeably, if a model generated
more output tokens, it had also had more input tokens.
Qwen2.5 7B has the longest average length for the analysis with 563 tokens. Llama3.1
8B’s average is slightly shorter with 510. The mean of the bigger models is less than
halve that of the smaller models, with 226 tokens for GPT-4o mini and 193 for Llama3.1
70B.
Llama3.1 8B has the longest average CoT length, with 328 tokens, followed by Llama3.1
70B with 214 tokens, Qwen2.5 7B with 178 tokens and GPT-4o mini with 76 tokens. We
inspect the reasons for the differences in Section 6.1.
While the smaller models tend to have a longer output for the analysis and CoT, this is
not the case for the generated RAG search query. GPT-4o mini has the longest average
search query with 102 tokens, followed by Llama3.1 70B with 95 tokens. Llama3.1 8B
has 20% less than GPT-4o mini with 81 tokens and Qwen2.5 7B has almost 50% less,
with 52 tokens.

5.4 Ablation Study
To investigate the impact of the different features, we conduct an ablation study using
Llama3.1 8B. We also enable guidance, as without it the success rate is too low to
evaluate the influence of the features. With five different features we have 25 = 32
possible combinations. For our purpose only 22 are relevant, since one variation is the
baseline, one is the full prototype, and eight combinations are redundant, due to the
dependency between RAG and Analyze. Since RAG is included in the Analyze prompt,
combinations, where RAG is enabled but Analyze is not, are irrelevant, because they
are functionally no different from variations where both are disabled. The results can be
seen in Table 5.3.
All configurations, with one exception, lead to a significant increase in success rate and
reach at least 42%. With almost there runs included, four variations even surpass the
prototype and achieve 75%. The highest scoring combination is analyze+CoT+RAG
with 67%, matching the prototype.
The most significant enhancement appears to be Analyze, as it is included in all top
ten configurations. Additionally, 6/10 use History Compression, 5/10 use CoT, 5/10
use RAG, and 3/10 use SvP. Furthermore, analyzing the specific tests shows that all
combinations that solve or partially solve test-9, 13/15 configurations that solve test-10,
and all variations that reach 100% on test-2 or test-7 use Analyze. No other feature has
such an influence on any test.
While RAG appears only five times in the top ten, it is more significant than 6/10 History
Compression or 5/10 CoT, since there are only seven5 combinations in total that have
RAG enabled, compared to 11 for both CoT and History Compression. In addition, all

5With 32 combinations, each feature is enabled in 16. For RAG, 8 are removed because of the
redundancy and one variation is the full prototype. This means there are only 7 combinations that
include RAG. Analyze keeps 15, while CoT, SvP and History Compression lose 5 configurations.
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configurations that solve or partially solve test-3 or test-11, and 6/8 that reach 100% on
test-4 use RAG.
Out of the four tests that Llama3.1 8B does not solve when using the prototype, only
test-12 remains unsolved by all variations. The remaining three are solved at least once,
with test-6 even being solved in 50% of all combinations. Two variants succeed in solving
test-9, which no other model was able to do. However, compared to the full prototype,
no configuration reaches 100% on test-10. In addition, almost no combination solves or
partially solves test-3. We investigate the reasons for the poor performance on test-1 and
test-3 in Section 6.8.
Looking at the features in isolation shows that some of them alone can already increase
the linux privilege escalation attack capabilities of Llama3.1 8B by a significant margin.
Both Analyze and History Compression reach a success rate of 50% but differ in their
consistency. Analyze solves 4/6 tests with 100%, compared to History Compression,
which solves 4/6 with 33%, and only a single test with 100%. CoT achieves 42%, but
similarly to History Compression, it struggles with consistency, solving not a single test
with 100%. SvP by itself has 17%, matching the baseline of Llama3.1 8B. While RAG
alone does not work, since it needs the analyze component, enabling both achieves 58%
with mediocre consistency.
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CHAPTER 6
Discussion

While we conduct a quantitative analysis in Chapter 5, we perform a qualitative analysis
in this chapter, investigating different aspects of the experiment. We discuss different
model reactions to our CoT implementation (Section 6.1), hallucinations (Section 6.2),
executing multiple commands per round (Section 6.3), consistency (Section 6.4), guidance
(Section 6.5), discovery (Section 6.6), WhiteRabbitNeo (Section 6.7), ablation study (Sec-
tion 6.8), answers to the research questions (Section 6.9), threats to validity (Section 6.10)
and limitations (Section 6.11).

6.1 CoT Reaction
In Section 5.3.4, we mention that Llama3.1 8B has the longest average CoT, followed
by Llama3.1 70B, then Qwen2.5 7B, and finally GPT-4o mini. This ranking reflects
the reactions from the different models to our CoT implementation. Llama3,1 8B and
GPT-4o mini’s behavior remains the same as in the initial prototype runs, despite the
overall changes we made. Both show a thought process in most iterations and while
Llama3.1 8B also extracts facts, GPT-4o mini tends to ignore that part. Similar to
Llama3.1 8B, Llama3.1 70B, and Qwen2.5 7B also follow the CoT instructions, but to
a lesser degree. In summary, it can be stated that Llama3.1 8B adheres to the CoT
template the most, followed by Llama3.1 70B, then Qwen2.5 7B, and finally GPT-4o
mini.

6.2 Hallucinations
Throughout our experiments, we noticed that hallucinations are introduced by two
different sources: the first source is the guidance that is provided to the model. This
affects all tested models and can be seen in test-11, where all models start hallucinating
the name of the backup script as a result of the guidance: "it looks like there is a periodic
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6. Discussion

backup script in the home directory.". This highlights the need for special attention when
designing a guidance system.
The second source is the data provided by RAG. The vector store contains information
about various third party scripts, programs or libraries, which are frequently provided to
the LLM. This results in the model hallucinating tools, that are not present.

6.3 Multiple Commands per Iteration

We also observe a difference in behavior between the models in regard to the amount
of executed commands in a single iteration. GPT-4o mini never returns more than one
command, while Llama3.1 70B sometimes does. This behavior is the complete opposite
to the smaller models, which both frequently execute multiple commands in a single
round. Executing more than one command has the consequence that the RAG search
query becomes diluted since it is based on multiple outputs instead of just one.

6.4 Consistency

While the ablation study has shown, that almost any combination of our selected features
already leads to a significant increase in success rate when it comes to automated linux
privilege escalation attacks, it also highlights that in order to achieve high consistency
across the various tests, all components are needed. As seen in Table 5.3, no configuration
reaches 100% on test-10, and the majority of combinations that solve test-4 or test-7
fail to reach 100%. The prototype on the other hand achieves 100% in 6/8 solved test
cases, with only a single one having 33%. A similar consistency can be seen for all tested
models, with the exception of WhiteRabbitNeo, which does not solve a single test with
100% across any setting.

6.5 Guidance

6.5.1 Guidance in the Baseline Runs

While guidance substantially increases the success rate of all models when using our
prototype, the improvements are significantly less in the baseline runs, with Qwen2.5 7B
not improving at all. Analyzing the logs shows, that guidance provided significant help,
but smaller LLMs were not able to capitalize on it. Both Llama3.1 8B and Qwen2.5 7B
find the vulnerability in 7/12 tests, but either completely ignore the information or fail
to exploit it. Similarly, Llama3.1 70B and GPT-4o mini find the vulnerability in the
majority of tests, but compared to the SLMs they are better at utilizing the information.
WhiteRabbitNeo fails the majority of the tests due to timeouts, which we discuss in
Section 6.7.
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6.6. Discovery

6.5.2 Misunderstanding Guidance

Besides hallucinations, there is another issue that we encountered because of guidance,
which is the LLM misunderstanding the provided information. An example of this is test-3
in one of the prototype runs of Llama3.1 8B (llama_8b_fp_hints_run3.sqlite,
run_id=3, round=2, cmd_id=1, in column answer). The vulnerability is a sudo
misconfiguration, that allows the user to open a root shell using the tar binary. The given
guidance, "there might be some bad sudo binaries on the system", refers to the tar binary.
During the analysis step, the prototype correctly identifies the weakness in round 1 and
suggests a command that would lead to a successful exploit. Instead of simply taking
that command and executing it in the next iteration, Llama3.1 raises its concerns about
the suggested command during the CoT process and refuses to use it. The LLM argues,
that since the guidance mentions that there might be bad sudo binaries on the system,
it cannot trust sudo and therefore cannot execute the suggested command, because it
contains sudo.
This behavior shows, that if guidance is misunderstood, it can have the opposite effect,
preventing the LLM from exploiting a vulnerability.

6.6 Discovery

Discovery is a crucial step during the penetration testing process, in which the pentester
tries to find and identify vulnerabilities in the system that can be exploited. While
our prototype has shown promising results when using guidance, there is s significant
performance drop when only using the prototype. When analyzing the data, we found
that in the majority of cases, the exploitation fails at the discovery step. For example, in
test-7/8/10 the root password can be found, depending on the test, in either a user file,
the bash history, or a configuration file. However, in not a single run of any model were
any of the passwords found. A similar scenario is in test-11, where the vulnerability is a
cron script in the home directory.
Finding the weakness is only the first part of the discovery process. The second part is
to correctly identify it as a vulnerability. Depending on the vulnerability, this can pose a
significant challenge. A prime example of this is the first test. In test-1 there is a python
binary with the SUID bit set, allowing the user to open a root shell using python code.
In almost all runs of all models, the respective LLM explicitly searches for binaries with
a set SUID bit and therefore finds the exploitable python binary. Most of the time it is
found multiple times during the test. The issue arises in the analyze step. Instead of
correctly identifying the python binary, all models primarily focus on common binaries
with a set SUID bit, like sudo, su, or passwd.
To improve the first part of the discovery process we introduced SvP (Section 4.1.3),
which guides the LLM into common attack vectors by providing essential commands.
A qualitative analysis shows, that this feature is successful and enables the LLMs to
consistently find the vulnerability if one of the commands leads to it. However, as
test-7/8/10 highlight, the impact is limited to the quality of the provided commands. If
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an attack vector is not covered, the vulnerability wont be found.
Similarly, we introduced Analyze (Section 4.1.6) to enhance the ability of LLMs to
recognize vulnerabilities. This gives the LLMs a reflective ability and as shown in the
ablation study, can lead to substantial increases in performance. However, as test-1
demonstrated, the impact is limited by the LLMs own knowledge base.

6.7 WhiteRabbitNeo
WhiteRabbitNeo is an open-source SLM, that is fine-tuned on a diverse set of offensive
and defensive cybersecurity topics, including misconfigurations and default credentials.
While the model itself is public, the exact datasets used to train it and the used training
method are not known. As base model, they use Qwen2.5-Coder 7B. We encountered
several problems when evaluating it against our benchmark.
The first issue we ran into was that it struggles to follow instructions. This is a problem
in the baseline runs, where the model is supposed to only return the command that
should be executed without adding any explanation. Instead, the LLM either returns
an invalid format or appends a text wall. We experimented with adjusting the prompt,
which improved, but did not fully resolve the situation. This issue resolves itself in the
prototype since there we use <command></command> tags to filter out the command
from the chain of thought. As we did not have this problem with Qwen2.5 7B, the root
cause could lie with Qwen2.5-Coder 7B or that WhiteRabbitNeo was fined-tuned with
an additional conversational dataset, that trained it to always explain itself.
The second and main problem we encountered, was random spikes in response time,
independent of the input size. In the majority of the performed tests, the LLM repeatedly
exceeded the time limit until all retries were used. This resulted in WhiteRabbitNeo not
finishing most of its runs. We also noticed, that once the time limit is exceeded, it will
also be exceeded in any following retry. To minimize the runtime, we set the timeout to
five minutes.

6.8 Ablation Study: Test-1/3
As seen in Table 5.3, out of all the tests that Llama3.1 8B (prototype enabled, Table 5.2)
solves, only test-1 and test-3 are never or barley solved by any combination.
Examining the prototype runs of Llama3.1 8B shows that out of the two times where it
solved test-1, one time the analyze component missed the vulnerability, but CoT picked
it up and executed the correct command, the second time, the analysis identified the
weakness and CoT executed it. The same pattern can be seen in the ablation study. In
every combination that partially solves test-1, CoT, Analyze or both are enabled. As
described in Section 6.6, the primary hindrance for LLMs in test-1 is recognizing python
as the vulnerability and not getting distracted by other binaries. To fully solve the test
it seems that all features have to be enabled.
Test-3 is solved or partially solved by only two out of 22 combinations. To solve the third
test, there are three key steps that need to happen. The first one is figuring out that
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there is a sudo misconfiguration, that allows the user to execute the tar binary with sudo.
The second one is retrieving the needed information from the vector store and including
it in the analysis. Finally, in the next round CoT needs to choose the correct command
to execute. While the misconfiguration is discovered at least once in almost all runs, in
some runs it is not discovered a second time after the first discovery did not lead to a
successful exploit, resulting in an unsuccessful test. Another problem arises when trying
to retrieve the relevant documents. As mentioned in Section 6.3, Llama3.1 8B frequently
executes multiple commands per turn, which dilutes the search query and prevents the
information about the tar binary from being retrieved. Finally, the exploitation can also
fail at the final step, during the CoT process, if the LLM picks a different command than
the one provided in the analysis.

6.9 Answers to the Research Questions
RQ1. As seen in Table 5.2, our proposed prototype can significantly increase the
success rate, depending on the model and the experiment setting. The performance of
Qwen2.5 increases by eight times, when using the prototype combined with guidance
(67%), compared to only guidance (8%). GPT-4o mini increases by five times, going from
baseline (8%) to prototype (42%), while Llama3.1 8B either doubles or quadruples its
success rate, depending if guidance is enabled or not.

RQ1.5. As mentioned in Section 5.3.1, local models can match or even outperform
GPT-4o. However, without guidance, only GPT-4o mini is able to match GPT-4o. While
the prototype increases the success rate of all open-source models, it is not able to close
the gap to GPT-4o.

RQ2. As described in the ablation study (Section 5.3), the most influential feature is
Analyze. It augments the model with the ability to reflect on the previous round, allowing
it to identify vulnerabilities and suggest corresponding commands. RAG enriches the
knowledge base of the LLM, while CoT enhances its reasoning capabilities. SvP improves
the structural approach of the LLM and History Compression ensures that the worldview
remains compact and concise. Furthermore, the ablation study highlights, that many
different combinations of features can lead to a significant increase in performance, but
often lack consistency.

6.10 Threats to Validity
The selected models, as well as the vulnerabilities in the chosen benchmark could be
subject to a selection bias. Creating an exhaustive linux privilege escalation benchmark
is not feasible. Similarly, the frequent releases of SOTA models makes it impossible to
evaluate all of them. Furthermore, our preliminary study could also be subject to a
selection bias, since we primarily focus on Llama. To counter this, we selected three
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well-known LLM families in Llama3.1, Qwen2.5 and GPT, covering both open-source
and closed-source, for the final evaluation.
Another threat to validity is the randomness of the models. We chose a non zero value
for the temperature to reflect real-world applications. To take this into account, each
model runs each configuration three times to gain an performance overview. Ideally, more
repetitions would be beneficial to gain a more accurate score, but this was not possible
due to resource limitations.

6.11 Limitations
While our prototype has shown promising results, there are several limitations. Most
notably, as shown in the evaluation, open-source LLMs rely on the provided guidance
to achieve good results. The only model that was able to compete with GPT-4o only
using our prototype was GPT-4o mini. This highlights a significant gap in the ability to
discover vulnerabilities, between open-source and closed-source models.
Additionally, there are also limitations to the individual components we use in our
prototype. As we describe in Section 6.6, SvP works as intended and helps guide the
LLM into specific attack vectors, allowing it to find vulnerabilities. However, this feature
only works in scenarios, where one of the provided commands points to the direction
of the vulnerability. If this is not the case, the vulnerability remains hidden. Similarly,
RAG has demonstrated its ability to fill missing knowledge gaps, by enhancing the model
with specific commands and general knowledge about linux privilege escalation attacks.
Like SvP, RAG suffers from the same limitation. If the vector store does not contain the
needed information, RAG cannot fill the gap.
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CHAPTER 7
Conclusion

The aim of this thesis was to investigate to what degree open-source models can be
improved for the purpose of autonomous linux privilege escalation attacks. To this end,
we propose a prototype that enables models with less than 10B parameters to compete
with cloud-based models like GPT-4o. The prototype consists of a variety of components,
that on one hand, improve the reasoning capabilities and knowledge base of the used
model, and on the other hand, augment it with a reflective ability and enhance the
structure of the generated privilege escalation process.
Our results show, that depending on the size of the model and the experiment setting,
open-source LLMs can match or even outperform GPT-4o. Furthermore, our prototype
can lead to significant reductions in context size usage. However, the experiments also
highlight a severe lack, when it comes to the discovery process, compared to closed-source
models like GPT-4o or GPT-4o mini.
While this thesis has demonstrated the potential open-source models for automated
linux privilege escalation attacks, future research could adapt this to automated general
penetration testing, as current approaches have only shown success when using cloud-
based LLMs.
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Appendix

Figure 1: Example for Chain of Thought [WWS+22].
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