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Kurzfassung

Diese Arbeit befasst sich mit der Herausforderung, Primärverspätungen im Eisenbahn-
betrieb genau zu erfassen. Diese stellen einen entscheidenden Faktor für die effektive
Fahrplangestaltung von Eisenbahnverkehrsunternehmen dar. Traditionelle Ansätze be-
ruhen oft auf vereinfachten Annahmen über Verspätungsverteilungen oder auf deter-
ministischen Modellen. Solche Modelle sind jedoch nicht in der Lage die komplexen,
stochastischen Verspätungsmuster der Realität adäquat abbilden. Ziel dieser Arbeit
ist es daher, die Modellierung von Primärverspätungen zu verbessern. Hierzu werden
Primärverspätungs-Injektionsmodelle (PDIMs) entwickelt und bewertet. Die damit gene-
rierten Primärverspätungen dienen anschließend als stochastische Eingabe für makrosko-
pische Eisenbahnsimulationssysteme.

Die Methodik umfasst eine detaillierte Analyse realer Eisenbahndaten. Dazu gehören Zug-
fahrtaufzeichnungen und Infrastrukturmodelle, die von der ÖBB-Infrastruktur AG bereit-
gestellt werden. Daraufhin werden verschiedene statistische und maschinelle Lerntechniken
untersucht. Besonders wichtig ist hierfür die Identifikation optimaler Wahrscheinlichkeits-
verteilungen (Log-Normal und Pareto) zur Modellierung von Primärverspätungen. Auf
dieser Grundlage wurden verschiedene Modelle entwickelt, wie zum Beispiel CatBoost-
basierte Modelle zur Parametrisierung von Wahrscheinlichkeitsverteilungen (DistBoost),
Ensemble-Modelle und bayesianische hierarchische Modelle.

Ein zentrales Ergebnis dieser Diplomarbeit ist die überlegene Leistung des DistBoost-
Modells im Vergleich zu anderen Verfahren. Insbesondere kann es epistemische Unsi-
cherheit effektiv erfassen, indem es Wahrscheinlichkeitsverteilungen mittels maschinellen
Lernens parametrisiert. Dabei kann ein ausgewogenes Verhältnis zwischen Genauigkeit,
Effizienz und Anpassungsfähigkeit hergestellt werden. Die Arbeit verdeutlicht, wie wichtig
es ist, sowohl aleatorische als auch epistemische Unsicherheit in der stochastischen Verzö-
gerungsmodellierung zu berücksichtigen. Zudem werden Grenzen in der Anwendung von
punktuellen Fehlerkennzahlen, wie dem mittleren absoluten Fehler, aufgezeigt. Es erweist
sich auch die Notwendigkeit, die Anpassung der Verteilung für verschiedene Eingaben
systematisch zu evaluieren. Besonderes Augenmerk wird auf die genaue Modellierung
von Primärverspätungen für die Verbesserung von Simulationsergebnissen gelegt, be-
sonders im Umgang mit Extremwerten. Insgesamt liefert diese Arbeit einen fundierten
theoretischen Rahmen zur Modellierung primärer Verspätungen und leistet damit einen
wesentlichen Beitrag zur Optimierung der Fahrplangestaltung.
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Abstract

This thesis addresses the challenge of accurately sampling primary delays in railway
operations, which represent a critical factor for effective scheduling and disruption
management for railway operators. Traditional approaches often rely on simplified
assumptions about delay distributions or use deterministic models, failing to capture the
complex, stochastic nature of real-world delays. This thesis aims to enhance the modeling
of primary delays through the development and evaluation of Primary Delay Injection
Models (PDIMs), which serve as a stochastic input to macroscopic railway simulation
systems.

The methodology involves a detailed analysis of real-world railway data, including train
travel records and infrastructure models provided by the Austrian Railway Infrastructure
provider (ÖBB-Infrastruktur AG). Various statistical and machine learning techniques are
explored. Particularily important is the identification of optimal probability distributions
(Log-normal and Pareto) for modeling primary delays. Based on this foundation, various
models were developed, including CatBoost-based parameterized distribution models
(DistBoost), ensemble models, and Bayesian hierarchical models.

A key finding of this thesis is the superior performance of the DistBoost model compared to
other approaches. It effectively captures epistemic uncertainty through machine learning
parameterization of probability distributions, achieving a balance between accuracy,
efficiency, and adaptability. The thesis demonstrates the importance of considering
both aleatoric and epistemic uncertainty in stochastic delay modeling, highlighting the
limitations of relying solely on pointwise error metrics and emphasizing the necessity of
evaluating distributional fit. Furthermore, the research underscores the critical role of
accurate primary delay modeling in improving simulation outcomes, including the proper
representation of extreme values. Ultimately, this work contributes to the advancement
of railway simulation by providing a robust framework for modeling primary delays and
thereby optimizing scheduling and disruption management.
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CHAPTER 1
Introduction

1.1 Problem Statement
The Austrian Federal Railway (ÖBB) is the primary operator of freight and passenger
services in Austria. In the railway sector, various planning tasks require a framework
to effectively and accurately assess the real-world feasibility of a given plan. One of
the crucial planning tasks in this domain is the preparation of traction unit circulation.
Currently, this task is handled by experts who have a deep understanding of the railway
network and operational constraints. However, growing complexity, personnel shortages
and the need for rapid rescheduling - especially in the face of unforeseen disruptions such
as floods - are making manual planning increasingly difficult [sta24].

These scheduling problems can be formulated as optimization problems; in the case
of traction unit circulation, the Locomotive Scheduling Problem (LSP)[Gle57], which
aims to find the optimal assignment of traction units to scheduled trains. Whereby the
optimal assignment is defined by finding the minimum of the overall operating costs. The
definition of operating costs varies by the operator but could be e.g. as few empty runs
as possible or low energy consumption.

Numerous approaches have been proposed to solve this problem. For instance, Frisch et
al. [FHJW19] developed a model based on a sparse multi-graph structure to represent
scheduling requirements and utilized a Mixed-Integer Linear Program (MILP) to find
optimal solutions. This approach also incorporated maintenance constraints, allowing for a
more practical schedule optimization. Although optimization models are computationally
efficient and generate theoretically optimal schedules, real-world railway operations face
uncertainties that cause delays. These delays are categorized as primary (from unexpected
events like equipment failures or high passenger volumes) and secondary (caused by
operational conflicts from primary delays, also known as congestion). Incorporating these
into the optimization model is complex.
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1. Introduction

To address this, Rößler et al.[RWJ+20] developed an agent-based simulation model with
an event-based time update to evaluate schedules. Agents in the model represent trains
and traction units, but also the infrastructure elements of a rail network like stations and
sections. Each of these agents has predefined behaviors. The events and agents operate
on a macroscopic level, which defines behaviors only between Operational Control Points
(OCP) representing mostly train stations or larger junctions but partially also signals.
Therefore, travel times cannot be correctly simulated and are therefore extracted from
the schedules. Microscopic systems, on the other hand, model each switch and signal
in the network individually. Further, they calculate acceleration and braking as well
as times needed to hand out movement authorities in a train protection system. Some
systems also model driver behavior. This makes the microscopic system much more
precise but also computationally expensive. One of the assumptions made is that, while
on a coarser granularity, the model accurately simulates train movements in the network
and therefore has the capability to correctly calculate secondary delays.

To evaluate schedules in real-world conditions, the model needs to accurately represent
primary delays as well, requiring these delays to be injected in each simulation step.
However, differentiating between primary and secondary delays is not straightforward.
Although datasets differentiating between primary and secondary delays exist, a railway
operator’s classification may not align with the needs of a simulation system. For the
simulator, any delay it cannot model, such as those caused by unknown trains from
other rail transport providers, is considered a primary delay, whereas the rail provider
would classify these as secondary. In response to this challenge, a network-analysis-based
method for disaggregating primary and secondary delays was proposed by Schwab et al.
[SRK+24], which forms the underlying data basis for this thesis. Against this background,
this thesis aims to improve modeling of primary delays within the simulation.

1.2 Contribution
The goal of this thesis is to develop and test different Primary Delay Injection Models
(PDIMs). Rößler et al. [RWJ+20] developed an initial PDIM, where different Machine
Learning (ML) Models were employed to tackle the regression task. The data used
to fit these models was still aggregated total delay data. This model operated under
the assumption that delays follow a normal distribution. Various models, including
neural networks, k-nearest neighbors regression and random forest regression were used
to predict two key parameters for two probability distributions: (1) ρ, the probability of
a primary delay occurring as input into the binomial distribution, and (2) µ, the mean of
a normal distribution from which the delay was drawn.

This master thesis seeks to improve upon this initial model. The current model’s assump-
tion of normally distributed primary delays may not accurately reflect the complexities
and irregularities of real-world railway operations. To adress this, the thesis will explore
alternative approaches to better model delays and will be the first using disaggregated
delays. Primary delay sampling is, to my knowledge, in all read papers on railway
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1.2. Contribution

simulation, microscopic and macroscopic, a neglected part of the simulation model, as
the fitting of the delay distributions is only explained briefly.
In the course of this thesis, three main model families will be evaluated. The first
approach, similar to the previous implementation, uses a ML Model to parameterize a
probability distribution for each event in the dataset. These parameter predictions can
then be used to sample new delays from the probability distribution. However, instead of
assuming normality, a detailed analysis is conducted to determine which distribution best
fits the data. Additionally, a state-of-the-art model is trained to estimate the appropriate
parameters.
The second approach employs Bayesian modeling techniques based on Markov Chain
Monte Carlo (MCMC) sampling. For these Bayesian models, selecting the best-fitting
distribution is also essential for modeling the likelihood. Multiple Bayesian models with
varying levels of complexity will be implemented and evaluated.
Finally, the third approach trains an ensemble of ML models. This is done independently
with a random component to enhance robustness. In the end, this ensemble can be used
to predict many delays given one input.
The evaluation of the proposed models will be conducted on two levels. First, its
theoretical performance will be assessed by measuring the pointwise error between
predictions and true values, as well as evaluating the overall fit of the predictions. For
the Bayesian models, examining the Expected Log Pointwise Predictive Density (ELPD)
will be used to compare posterior distributions to the observed data. Since all models
are stochastic, it is important to examine the diversity of their predictions, whether they
generate a range of possible outcomes or consistently produce similar values for the same
inputs.
However, theoretical performance alone provides only limited insight, as the models are
intended to function within a simulation framework. Therefore, the preferred evaluation
metric is their performance in conjunction with the simulation model, allowing for a
more comprehensive assessment of their effectiveness in practical applications.

1.2.1 Research Questions
The research questions to be answered are:

• R1: Which likelihood distribution best captures the statistical characteristics of
disaggregated primary delays in railway operations and which test is best to evaluate
the fit?

• R2: How do models which represent either aleatoric uncertainty, epistemic uncer-
tainty or those who represent both impact model performance?

• R3: How can the stochastic delay model be extended to generalize for predict-
ing primary delays in novel railway scenarios (e.g. new trains, routes, altered
timetables)?

3
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• R4: How can the stochastic primary delay model, in conjunction with the simulation
loop, be validated by evaluating its ability to reproduce observed total delays?

1.3 Methodology
The methodology involves the following steps:

1. Literature Review
A comprehensive review of existing research on train delay modeling will be con-
ducted, covering primary, secondary, and total delays. Additionally, studies on delay
disaggregation, railway simulation models, stochastic simulation and the evaluation
of such models will be examined. Special attention will be given to methodologies
for modeling stochastic random variables, particularly Bayesian models.

2. Data Preprocessing
While the dataset provided has undergone initial preprocessing, additional steps
will be undertaken to refine it for the task of primary delay prediction. These steps
include standardizing and normalizing the values, engineering new features (such
as infrastructure-related features) and conducting a thorough investigation of data
quality.

3. Selection of Likelihood or Target Distribution
Before developing the models, an appropriate likelihood distribution (for Bayesian
models) or target distribution (for parameterized ML models) must be identified.
Previous studies will be analyzed to determine suitable distribution candidates based
on the characteristics of the problem. Various statistical tests will be conducted
and evaluated to select one or more candidate distributions.

4. Model Implementation and Training
The previously described models will be implemented and trained. The structure
of the Bayesian models will be defined with the help of domain experts, while
for the ML models hyperparameter optimization will be implemented to improve
performance.

5. Theoretical Model Evaluation
The model will be validated using multiple approaches. Standard error metrics,
such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE),
will be used to assess prediction accuracy, alongside inter-sample diversity metrics
to evaluate stochastic variability. Using statistical tests the fit of the predictive
distribution will be evaluated.

6. Simulation Integration

4
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However, these metrics alone do not fully capture the model’s interaction within
the simulation system. Therefore, validation will also include integrating the
Primary Delay Injection Model (PDIM) into an agent-based simulation model. The
integration process requires connecting the Python-based prototype to the existing
C# simulation framework. The model’s effectiveness will be assessed by testing
its ability to generalize to previously unseen timetables. While the impact of the
model on entirely new schedules and infrastructure cannot be evaluated due to data
constraints, potential implementation strategies for such cases will be discussed.

5





CHAPTER 2
Background

In this section, the state of the art on multiple topics regarding railway modeling will be
reviewed, even though the main topic of this thesis is the stochastic modeling of primary
delays, a broader introduction into the field is necessary. First, a primer on delay types
and disaggregation will be given. Then, the focus will be on delay modeling and the
difference between delay prediction and delay sampling. The delay prediction task aims
to predict a future delay as accurately as possible. This is especially needed in passenger
information systems, freight tracking systems and delay management [OFC+17]. Delay
sampling, on the contrary, has a different goal; instead of a deterministic prediction for
each input, multiple possible outcomes representing many realistic scenarios need to be
sampled.

Additionally, various approaches to railway simulation models will be reviewed. These
models serve multiple purposes in the rail industry, including capacity estimation [TNv20],
timetable optimization [HB23] and traction unit circulation planning [RWJ+20]. The
focus will be on the underlying modeling paradigms, rather than specific applications, as
this thesis aims to enhance the models’ ability to simulate real-world behavior and is
therefore independent of any particular task.

The field of train delay modeling and prediction can be categorized along four axes:

• Methodological Approaches:

– Multi-step event-driven models: Incorporate future states into the cal-
culation of current states, using frameworks such as graph models, Bayesian
networks, Markov chains, Petri nets and equation systems. These models are
inherently stochastic [STBC22].

– Single-step data-driven models: Predict delays without modeling event
dependencies, often using regression, decision trees, neural networks, and
support vector machines. These models are typically deterministic [STBC22].

7



2. Background

• Uncertainty Representation:

– Stochastic models capture the probability distribution of delay realizations
but often assume fixed distributions, which may not account for real-time
variability [CK18].

– Deterministic models produce a fixed output for a given input but are often
more complex and therefore capable at capturing complex relationships. As
they are easier to fit, they can often deal with many input features [OFC+17].

• Temporal Scope:

– Static (Offline, Long-Term): Models run on a historic static dataset
[CK18, TMP23].

– Dynamic (Online, Short-Term): Models adapt to real-time train position
and delay information [CK18, TMP23].

• Horizon Scope:

– One station ahead: One shot prediction for the delay at current event
[TMP23].

– Static multiple stations prediction: One shot prediction of delay at station
Si [TMP23].

– Dynamic multiple stations prediction: Model updates the predictions as
railway traffic information evolves (either real online information or simulation)
[TMP23].

2.1 Delay Types and Disaggregation
For larger diverse train networks including freight and passenger transport, historical
train records only contain the Total Delay (TD) of each train. In small studies on
e.g. high-speed lines, disaggregated data can be available [WLL+17]. If this is not the
case, a disaggregation model is needed. Palmqvist et al. [PJS23] introduced a technique
to estimate the proportion of primary delays by injecting delays into a macroscopic
simulation tool and observing the percentage required to reproduce actual running times.
While this method reproduced running times effectively, it has certain limitations. The
fact that a timetable can be reproduced with discerned primary and secondary delays
does not indicate that the disaggregated values represent the real ones. Further, it
assumes that delays are either purely primary or secondary, whereas real-world delays
often involve a mix of both.

Network Based Approach

Schwab et al. [SRK+24] developed a network-based disaggregation model which deter-
mines blocked edges in the graph to discern primary from secondary delays. In the

8



2.1. Delay Types and Disaggregation

proposed system, a delay is regarded as secondary if "one or more other trains can be
found that were on the downstream following node or edge while train A was at the
considered node or edge. The assumption is that these trains caused train A to stay
longer at its current stop" [SRK+24].

The network based model can be tuned by two parameters, tnode_free is the time that has
to pass after a train left the node until the next train can enter it, respectively tedge_free

is the time that has to pass before the next train can enter the edge. Thus the model only
considers one node or edge ahead. All trains which can be explained by this process were
labeled as explained_delays. Apart from the blocking, delays which are due to circulation
delays of locomotives were also labeled as explained delays and the remaining delays are
labeled as primary delays. The number of trains needed to block a train is defined by
the capacity which is extracted from the schedules. This approach has the advantage of
providing an explanation for the process while eventually missing microscopic processes,
which could give more detailed information about the type of delay.

The model was validated in conjunction with the Agent Based Simulation model. When
tnode_free and tedge_free were set to zero, the true delays could be reproduced by the
simulation model. With the threshold set to zero there are no additional delays injected
yet, except the circulation-based delays. As soon as this threshold was higher e.g. 25s the
error compared to the true values increased. The authors noted that there is "certainly
potential in the simulation model to further improve the quality of the simulation results"
[SRK+24].

Reinforcement Learning based Approach

Instead of disaggregating the delays, there is also the possibility to directly fit the primary
delay parameters such that they, in combination with a simulation model, reproduce
a given timetable. Cui et al. [CMZ16] used reinforcement learning as a method to fit
parameters of disturbance distributions with the goal to reproduce real-world delays
utilizing the Microscopic Simulation Environment RailSys. Due to limitations of the used
simulator RailSys only the negative exponential distribution could be used as it is the
only one supported by RailSys. Additionally, the models only accounted for three types
of events and lacked information regarding the train type, stop, or track, which could
have been used to adjust the model parameters. This approach simplifies the process
by merging disaggregation and modeling into a single step. The method yielded great
results, but the runtime performance was poor, even though the model had only six
parameters. One reason for this was that the state-of-the-art simulator (RailSys) used
in this paper was quite slow. To address this performance bottleneck, they developed a
more efficient simulator, which improved performance even though their tested network
had only approximately 73 stations.

In conclusion, there are multiple approaches for discerning primary and secondary
delays. While the fractional sampling is simple, the network-based method resembles the

9



2. Background

simulation model and is therefore effective to be used in conjunction with the simulation
system.

2.2 Delay Modeling
Delay prediction and modeling is a widely studied field, as railway operations are
vulnerable to delays, making accurate estimation highly valuable. A review on train
delay prediction approaches identified a total of 47 papers on the topic up to 2022
[STBC22]. Research on delay prediction in the railway domain has traditionally focused
on predicting total train delays and therefore modeling congestion and disturbances as
one process. These methods can either be single-step data-driven, which means to predict
the delay just by fitting a model to historic data, or multi-step event-driven, which have
an underlying model of the railway systems dynamics. Most data-driven methods are
deterministic, while the event-driven approaches are more likely to be stochastic. In the
following two subsections we will mainly split the approaches along the deterministic vs.
stochastic axis [STBC22].

According to the Review of Tiong et al. [TMP23] there is a substantial increase in the
number of publications on the short-term prediction with a trend towards models that
consist of a mixture of different models called hybrid-based models. These models can
adapt to numerous railway traffic conditions through the combination of multiple models,
resulting in a more robust train-delay-prediction-model [TMP23]. In recent studies
utilizing data driven methods, there is an emphasis on one station ahead prediction.
These models can then be extended to accomplish dynamic and static multiple stations
prediction. To realize static multiple stations prediction, a simulation model, where
data-driven model results are injected to simulate delays at downstream stations, is
utilized. To achieve dynamic multiple station predictions the inputs are continuously
updated as new information e.g., real-time train status or network conditions becomes
available [TMP23].

2.2.1 Determinstic Delay Prediction Models
Although delay prediction is not the primary goal of this thesis, it is worthwhile to
provide a brief overview of potential approaches, as these are extensively studied and
their concepts can be applied to Disturbance and Delay Sampling as well.

In this thesis, deterministic delay prediction models are defined as those trained to
minimize a loss function based on real-world delay values, which is commonly referred to
as supervised machine learning. With the increasing availability of large datasets of train
operations, data-driven methods have become more prominent. By framing the train
delay (TD) prediction problem as a time-varying multivariate regression task [OFC+17],
the rapidly advancing field of machine learning (ML) offers numerous approaches to
address this challenge. For instance, Oneto et al. [OFC+17] employed Deep and Shallow
Extreme Learning Machines to develop a data-driven model for predicting delays, using

10



2.2. Delay Modeling

a large dataset provided by Rete Ferroviaria Italiana (RFI), the Italian infrastructure
manager (IM). Enhancing the dataset with external factors, such as weather data, resulted
in a 10% improvement in prediction accuracy.

Nair et al. [NHL+19], in collaboration with the German railway operator Deutsche Bahn
(DB), developed a dynamic ensemble/hybrid prediction model for train delays. Their
approach combined a single-step, data-driven component using a random forest and
kernel regression model to capture train-specific dynamics, with a multi-step, event-driven
component employing a mesoscopic simulation model. The simulation accounted for
variations in travel and dwell time, inferred track occupation conflicts, train connections,
and rolling stock rotations [NHL+19].

Pineda-Jaramillo et al. [PJV23] explored several ML models to address the delay predic-
tion task for freight trains on intermodal networks. They reformulated the problem as a
binary classification task, categorizing trains as either delayed or not. Their results indi-
cated that the CatBoost model outperformed other ML approaches based on predefined
evaluation metrics.

These deterministic approaches, particularly those presented by Oneto et al. [OFC+17],
demonstrate that ML models can be effectively trained on extensive datasets. However,
since the output of Probabilistic Delay Impact Models (PDIMs) must be stochastic,
deterministic models cannot be directly applied in their basic form. Nevertheless, they
can be leveraged to estimate parameters for distributional models, making them feasible
for use as PDIMs.

2.2.2 Primary Delay & Disturbance Modeling with Distributions
The simplest form of stochastic delay models are distributional models, which estimate
one or more distributions from which delays or disturbances are sampled. Many railway
simulation systems, such as RailSys and PROTON/PRISM, utilize this straightforward
approach [Sip23a, CMZ16, ZBB+19].

Fitting primary, secondary, or combined delays to probability distributions is a well-
established practice in railway scheduling. Early work favored normal or exponential
distributions for modeling overall delays at stations [YGH02]. More recent studies have
increasingly adopted flexible distributions, such as log-normal, gamma, and Weibull
distributions, to model primary delays [Yua06, WLL+17, YHP+19, WLL+19]. For in-
stance, multiple studies on high-speed rail (HSR) lines in China examined the fit of these
distributions for primary delays, using maximum likelihood estimation to derive distri-
bution parameters. Wen and Yang et al. [WLL+17, YHP+19, WLL+19] demonstrated
that the log-normal distribution provided the best fit for their data, as validated by the
Kolmogorov-Smirnov test.

Goverde [GCD13] analyzed the capacity of different railway signaling systems under
disturbed conditions and fitted three distinct Weibull distributions to model disturbances
for freight, intercity, and sprinter services. Yang [YHP+19] had detailed data on the

11



2. Background

types of disturbances and therefore modeled each type separately. Wen [WLL+17] used
operational data from a 1,096-km double-track line with 18 stations. Delays were recorded
between February 24 and November 30, 2015, with delays exceeding 90 minutes discarded
due to their random distribution. For primary delays on this line, the log-normal
distribution was found to provide the best fit.

As these distributions are primarily used to sample delays in simulators, some studies
were constrained by the available distributions. Consequently, many studies rely on
the negative exponential distribution [CMZ16, HB23], as it is the default distribution
provided by RailSys [RMC24].

2.2.3 Stochastic Delay Prediction Models
The approaches in the previous section assume fixed probability distributions for train
delays and do not account for the influence of static or real-time information on train
positions and delays on the parameters of these distributions [CK18].

There are also more advanced approaches in the field of stochastic models, for instance,
Corman et al. [CK18] developed a delay prediction model utilizing a Bayesian network,
which represents the railway network. The structure of the Bayesian network is determined
under the assumption that train routes and orders are known. However, capturing the
delay dependencies between freight trains operating on ad hoc paths and other trains poses
challenges due to their low frequency of occurrence in historical data. This limitation
highlights difficulties in modeling interactions between different train types under realistic
operating conditions. The authors specifically examined the propagation of delays using
the Bayesian network, demonstrating its potential to predict complex interdependencies
between delays in a railway network.

2.3 Stochastic Simulation
Almost all real-world systems contain one or more sources of randomness, [Law13] this
is especially true in macroscopic simulation which inherently does not model complete
processes. Therefore, these random processes need to be modeled. In the past, this was
done commonly by sampling from probability distributions. This kind of simulation is
called stochastic simulation and requires input modeling, which is the construction of
appropriate probability models that "characterize the stochastic behavior of the system
inputs" [CAX20]. A prominent example are queuing models, where inter-arrival and
service times are modeled.

Law et al. [Law13] illustrate the most common pitfalls when estimating distributions.
The first pitfall is to replace the distribution by a static mean value as e.g. congestion
only occurs when rare events from the tails of a distribution happen. The second pitfall
is to use the wrong distribution to model a process, for example, the normal distribution
cannot model exponential processes [Law13]. They proposed a method to address these
issues by fitting a probability distribution to the data using e.g. maximum likelihood
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estimation. Evaluation of the fit can be achieved with graphical procedures (e.g. Density-
Histogram Plots) or goodness-of-fit tests (e.g. Kolmogorov-Smirnov (K-S) test). But
for some data sets, there is simply no theoretical distribution which has a good fit.
The reason for this can be that the data originated from two or more heterogeneous
populations or processes or that the data were significantly rounded (e.g. train delays to
the full minute) [Law13]. Another challenge in modeling a stochastic process (e.g., delays)
using probability distributions is that the input process is assumed to be univariate,
stationary, independent, and identically distributed (IID), which may not accurately
reflect real-world conditions [CAX20].

The so far discussed methods can only represent aleatoric uncertainty, which represents
intrinsic randomness of a phenomenon that cannot be reduced even if more information
were to be collected [KD09]. Supervised machine learning models are by their very nature
mostly used for interpolations by predicting new data points on the basis of historical
data, which makes them deterministic in their outputs and their parameters [WdLNvV24].
However, a deterministic machine learning model can be used to parameterize a distribu-
tion as was done in [RWJ+20]. This then makes it capable of representing the aleatoric
uncertainty.

Another important uncertainty is the epistemic uncertainty (a.k.a. input uncertainty),
which is due to a lack of knowledge or data. This uncertainty is especially important
if we have few data points. Approaches to modeling epistemic uncertainty generally
fall into two categories: Frequentist and Bayesian. Both of these approaches use the
available real-world data to make inference. The Bayesian approach makes it possible
to incorporate prior subjective expert opinion. While it is possible to compute closed-
form exact posterior distributions in the Bayesian case, more complicated models need
analytical approximations either utilizing Variational Inference or Markov Chain Monte
Carlo methods to approximate the posterior [CAX20].

Lately there has been a lot of research including more advanced ML-models to apply the
combined approach of simulation and machine learning. A subfield of this is Machine-
Learning Assisted Simulation. A prominent approach is to use surrogate models as cheap
approximators of more time-consuming models [vRMS+20].

2.4 Railway Simulation
Simulation models in the railway domain can be broadly categorized into microscopic
and macroscopic approaches. Microscopic simulation models aim to replicate real-world
dynamics as accurately as possible. This often involves detailed representations of
switch layouts, signaling systems, physical modeling of braking, and processing times
for operations such as movement authorities within train signaling systems [JPS+22].
Microscopic simulation models are primarily used to estimate capacity concerning design
decisions for specific segments of infrastructure [WS18], to evaluate the capacity of an
existing railway line [LNC24, SNTG21], or to assess schedules [HB23]. The most notable
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microscopic simulators, OpenTrack and RailSys, are both closed source, which limits the
reproducibility and comparability of studies conducted using these tools [JPS+22].

The downside of microscopic simulation is often its computational complexity. While
this is negligible for localized studies with a limited number of train runs, it becomes a
significant challenge for large-scale railway modeling [ZBB+19]. Furthermore, it is well
known that driver behavior varies among individuals and rarely aligns perfectly with the
rigid rules set in microscopic simulators [JPS+22].

This is where macroscopic simulation systems come into play. Detailed infrastructure
data is often unavailable on a global scale for large systems, such as the train network
of an entire country. For example, the German Railway Operator Deutsche Bahn (DB)
must simulate approximately 40,000 trains on a typical day. Macroscopic simulation
is often much more practical for matching train schedules and historical running data,
making it particularly suitable for scheduling tasks. The PRISM system (now called
PROTON), developed by DB, models the network using a graph-based approach, where
stations are represented as nodes and tracks as edges. Basic infrastructure information
is provided for these elements. For nodes, attributes such as overtaking capability are
included, while for edges, attributes such as the type of train protection system, the
number of tracks, electrification status, and maximum speed are specified. Trains are
also assigned various attributes. PRISM employs Monte Carlo discrete event simulation
to model interactions based on a given schedule [ZBB+19, Sip23b].

The macroscopic simulator used in this thesis is RailwaySim, an agent-based macroscopic
simulation tool used for robustness assessment studies. RailwaySim also represents the
rail network as a graph, with tracks as edges and stations as nodes. Active agents, such
as traction units, interact according to predefined schedules, occupying and releasing
track segments as they progress [RWJ+20, BBP+23].
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CHAPTER 3
Methodology

3.1 Datasets
The datasets used in this thesis were provided by ÖBB-Infrastruktur AG. The main dataset
is the delay dataset which contains records of train travel in the Austrian Train Network,
including scheduled times, for two consecutive days: the 14th and 15th of December
2022. The dataset includes both freight and passenger trains and provides entries for
each stop or pass at an Operational Control Point (OCP), which primarily represents
stations but also includes large junctions. The second dataset is the infrastructure model
dataset which contains information about the OCPs and tracks in between them.

3.1.1 Delay Dataset
Each data entry is classified as either a stop or pass event and contains scheduled arrival
and departure times, as well as the actual arrival and departure times. Therefore the
dataset provides not only the delay records, but also implicitly encodes the train schedule.
In the dataset, a stop event implicitly represents both a stop and a run, unless it is the
first stop of a train journey. For clarity, this composite event is decomposed into separate
stop and run events in the following analysis. Each train is uniquely identified by the
trainpart_id, and consecutive events are numbered using a sequence number. Due to the
decomposition of the stop event, a new sequence number is generated, where the run
event precedes the stop event. The delay of a train is defined as the deviation between
the actual and scheduled arrival or departure times. Therefore, the additional delay for a
run event is calculated as the difference between the arrival delay and the departure delay
at the previous OCP. For a stop event, the additional delay is defined as the deviation
between the departure delay and the arrival delay. This newly decomposed structure
makes the events much easier to interpret, as illustratively shown in Figure 3.1. In the
revised structure, each event explicitly has a scheduled and actual duration, as well as an
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additional delay. Although, this information could also be represented using timestamps,
it has been transformed into durations for the purpose of clearer illustration.

Type Sequence # Arrival Departure Scheduled Arr. Scheduled Dep.

Stop 1 14:00 14:00 14:00 14:00
Pass 2 14:30 14:30 14:20 14:20
Stop 3 14:50 14:55 14:40 14:50

Type Sequence # Actual Scheduled Additional Total
Duration Duration Delay Delay

Stop 1 0 0 0 0
Run 2 30 20 10 10
Run 3 20 20 0 10
Stop 4 5 10 -5 5

Table 3.1: Examplary decomposition of the composite stop event into seperate events for
a given train.

For the training of the models the disaggregated primary delay is used instead of the
additional delay. This primary delay stems from the research by Schwab et al. presented
in section 2.1. For stop events the primary delay stop and for run events the primary
delay run where used. The finding of the study suggested that an acceptable threshold
of tnode_free and tedge_free was around 25 seconds, representing a balance between error
and amount of injected delays. With higher thresholds the error increased heavily and
with lower ones the percentage of injected delays was quite small. The disaggregated
primary delays - although based on a model and therefore only an abstraction - will be
referred to in this thesis as the true primary delays. They serve as the ground truth
for the PDIM. However, even with these true primary delays, it is not possible to fully
reproduce the true total delays when injecting them into the simulation system.

Apart from the schedule and the historical running times, the dataset contains numerous
features. In Table 3.2 all the features used in at least one of the PDIMs are listed.
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Feature Description Value Summary
ocp_type Indicates if the event is a stop

or a pass
Either: Stop or Pass.

segment_or_stop Either contains the ocp_id
or a tuple of the previous and
next ocp

Either one of 1313 ocp_id
or one of 4457 segment tuples
(prev_ocp, next_ocp), de-
pending on the ocp_type.

passenger Boolean indicating if the train
is a passenger or freight train

Either: True or False

is_first_stop If the stop is the first stop of
the train

Either: True or False

category Train category (e.g., Eurocity,
Intercity, etc.)

Examples include Eurocity, In-
tercity, and Regional, in total
32 distinct values.

trainpart_speed Speed of the train part Ranges between 0 km/h and
230 km/h, with 21 distinct lev-
els.

operational_type Operational type of the OCP Either station, undefined or
junction

num_platform_edges If the ocp_type is Stop the
number of platform edges at
the current OCP

Ranges between 0 and 14 with
only the number 13 missing

num_siding_tracks If the ocp_type is Stop the
number of siding tracks at the
current OCP

Ranges between 0 to 67 with
41 distinct values

distance_geo Geographical distance in kilo-
meter

Ranges from 5 m to 11.4 km

v_max Maximum allowed speed on
segment

Ranges from 20 km/h to 250
km/h, with 24 distinct values

Table 3.2: Summary of the features present in the dataset. The entries with a white
background are from the Delay Dataset, those with a gray background are from the
Infrastructure Model Dataset.
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Even though the time frame of the dataset is quite small (2 days), it is a very vast dataset
including 14k trains running over 4457 segments and passing or stopping at 1313 OCP
generating 574k events. However, the short time frame also introduces some challenges,
especially concerning the choice of the model and the interpretation of evaluation metrics.

Data Anonymization

The exact delays of trains should not be made public and are therefore anonymized for
all charts in this thesis. This is achieved by applying Min-Max normalization, which is a
rescaling technique, that normalizes values into a specific range, typically [0, 1]. Given a
collection of delays denoted as a, with a minimum value of xmin and a maximum value of
xmax, the normalized values x′ are computed as follows:

x′ = x − xmin
xmax − xmin

This normalization preserves the relative differences within the data, while concealing
the true range.

3.1.2 Infrastructure Model Dataset
The infrastructure model comes in the standardized XML Format RailML 2.5. RailML
was introduced to improve interoperability between different infrastructure datasets
and simulation and operation software [NHSK04]. The dataset contains OCP including
metadata such as the operational type (station, junction, undefined) or references to the
tracks connected to the OCP. For each track their is metadata describing the maximum
allowed speed and the type of the track (track-running, siding, undefined) as well as to
which other tracks or OCPs its connected to. The tracks and OCPs were connected in a
graph-based way to calculate additional features such as the count of siding tracks or the
count of platform edges at a station. Furthermore, the physical distance was calculated
using a geospatial library, as this was missing in the initial dataset. In the following,
connections between two OCPs will be referred to as segments instead of tracks because
they could consist of multiple tracks representing one segment.

3.1.3 Data Quality & Cleaning
The simulation model had already undergone preliminary data processing as the datasets
were pre-processed before integration. However, to better interpret the results, the
overall data quality was carefully examined. In general, the data quality is very high.
Nevertheless, occasional issues arise, such as skipped OCPs, which result in minor data
inconsistencies. In addition, some entries span unusually large distances, indicating
potential data errors. Since the simulation model’s infrastructure is directly derived from
the dataset, these anomalies do not significantly affect the model. Therefore, this thesis
retains all entries, including potentially faulty ones, as the simulation model relies on the
complete dataset.
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Outlier detection and removal present challenges for delay values. First, there is no
definitive evidence that the outliers represent data errors, particularly since large delays
are plausible, especially for freight trains. However, outlier removal could still be beneficial.
If one considers a scenario with n simulation runs, each involving n × m events, the
probability of drawing a large value from the extreme tails is very low across all events
in the experiment. Consequently, with a limited number of simulation runs, removal of
large delays might improve the robustness of the results. This is why primary delays
above 2 hours were removed, resulting in a removal of 0.02% of the total events. The
discussion will explore both the benefits and drawbacks of this decision. Moreover, if a
greater amount of training data was available or more simulation runs would be feasible,
the inclusion of outliers could enhance the reliability of PDIMs in areas of extreme values.

3.2 Modelling Distributions
Before developing models for delay prediction, an appropriate target distribution from
which the PDIM can sample from, must be determined. Identifying this target distribution
depends on two key questions. The first question looks at which proposal distributions
should be evaluated. As mentioned in Section ??, the most prominent distributions in
this field are the gamma, log-normal, and Weibull distributions. Additionally, other
prominent extreme value distributions, such as the Pareto and the Generalized Extreme
Value (GEV) distributions, are included in the analysis. The Pareto distribution, in
particular, is evaluated due to its comparable features in capturing extreme values.

The second question concerns the kind of test that will be used to compare the distri-
butions. The selected distribution must also adequately represent large delays, which
implies that extreme values should be well captured. In addition, the overall fit of the
distribution should be assessed.

As a first step, the distributions were fitted to the dataset using Maximum Likelihood
Estimation (MLE) via the Python Scipy Library. The log-normal distribution in Scipy
has a location parameter, in addition to the scale and shape parameters. When using
MLE, the location parameter was fitted as well, even though the distribution should
start at zero, which is why it was fixed to zero.

Most studies on disturbance and delay modeling have used the Kolmogorov–Smirnov
(KS) test, which "is a non-parametric statistic for comparing two empirical distributions,
defining the largest absolute difference between the two cumulative distribution functions
(CDF) as a measure of disagreement" [LRH]. For a hypothetical CDF F (x, θ) and an
empirical CDF Fn(x) , the KS test measures the maximum absolute difference between
them:

max
x

| Fn(x) − F (x, θ) | (3.1)

The KS test is highly flexible as it is distribution-free, relying instead on an empirical
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distribution. Since the p-value becomes very small with reasonably large datasets, the
KS statistic itself is often used as the metric of interest.

Another test, which is more powerful for analyzing response time distributions, is the
Anderson–Darling (AD) test. However, this test does not support the log-normal and
gamma distributions. While it is possible to log-transform the data and then apply the
AD test, this approach would render the resulting statistic incomparable.

The maximum absolute difference measured by the KS test does not account for the
overall fit, which is also of interest for this task. To address this, one can use a quadratic
statistic, such as the Cramér–von Mises (CVM) statistic, which measures the mean
squared difference between the empirical and hypothetical CDFs [Lai04]:

Q2 = n

∫︂
allx

[Fn(x) − F (x, θ)]2 dF (x) (3.2)

For both the KS test and the CVM test, smaller values indicate either a lower overall
quadratic error or a smaller maximum difference.

Table 3.3 lists the test statistics for all proposed distributions. The Gamma distribution
was excluded from further analysis due to its poor performance in both tests.

Table 3.3: KS-Statistic and CVM-Statistic for the fit on the full dataset. The bold value
represents the best value in each row. In the last row, both statistics are combined. To
account for their different ranges, they were first normalized using min-max scaling before
being summed.

Weibull Lognorm Genextreme Pareto
KS Statistic 0.127 0.038 0.047 0.056
CVM Statistic 621.314 62.495 62.930 59.425
Combined 2.000 0.005 0.112 0.202

While the KS statistic for the log-normal distribution is notably low for a reasonably
large and heterogeneous dataset, the CVM statistic indicates a poor fit across nearly all
distributions. As noted in the background section, if no theoretical distribution provides
a good fit, the data likely originates from multiple processes [Law13]. Collaborating with
domain experts and analyzing the data revealed distinct event types corresponding to
different processes. These processes include differentiating between freight and passenger
traffic, stops and passes, as well as initial stops, which often involve significant delays.

The KS test results for each subset are presented in Table 3.4, while the CVM test
results are shown in Table 3.5. According to the KS statistic, the log-normal distribution
performs best in four out of six subsets. However, for the "First Stop/Freight" event, the
Pareto distribution fits better and for the "Stop/Freight" event, the Generalized Extreme
Value distribution achieves the best fit.
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The CVM statistic paints a slightly different picture. Here, the log-normal distribution
performs best for all passenger-related events. The Pareto distribution has the best
fit for the freight events, with the Weibull and Pareto distributions performing almost
identically in one instance.

Ideally, both statistics could be weighted again, and individual sub-PDIM models could
be built for each best-performing distribution. If only one target distribution was to be
chosen for a single model, the overall best-performing option would be the log-normal
distribution. However, if two models were to be developed, the Pareto distribution could
be used for all freight-related events, while the log-normal distribution could be applied
to all passenger-related events.

Table 3.4: KS-Statistic

Distribution Genextreme Lognorm Pareto Weibull
type mode
First Stop freight 0.560 0.093 0.024 0.019

passenger 0.032 0.023 0.026 0.080
Pass freight 0.047 0.034 0.041 0.445

passenger 0.060 0.051 0.071 0.496
Stop freight 0.124 0.168 0.131 0.178

passenger 0.241 0.045 0.056 0.464

Table 3.5: Cramer von Mises-Statistic

Distribution Genextreme Lognorm Pareto Weibull
type mode

First Stop freight 168.78 4.33 0.14 0.13
passenger 1.68 0.59 0.90 9.04

Pass freight 11.60 5.29 2.13 647.13
passenger 48.75 22.53 26.30 3949.87

Stop freight 7.27 13.18 5.64 36.73
passenger 998.72 20.69 29.72 1600.32

3.3 Models
The goal of the Primary Delay Injection Model (PDIM) is to accurately simulate stochas-
tically occurring primary delays. This is not merely a regression task, but rather a
stochastic sampling task. As outlined in the Background section, the PDIM is a single-
step, data-driven model. For each train, whether passing or stopping, a primary delay is
sampled. Furthermore, it is stochastic, designed to be used statically, and has a horizon
of one station ahead. However, when combined with the simulation model, it becomes
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event-driven, with the ability to make both static and dynamic predictions across multiple
stations ahead. Consequently, this thesis represents a combinatory approach. In a review
of train delays, Spanninger et al. concluded that "hybrid methods can combine the
strengths of data-driven and event-driven approaches" [STBC22]. Each PDIM samples a
predefined number of primary delays for each input, generating multiple predictions that
approximate the potential distribution of future delays. To ensure meaningful evaluation,
these predictions must capture diverse scenarios. This diversity is crucial for the next
step, where the sampled delays are injected into the simulation model to assess a wide
range of realistic outcomes.

To enhance the existing machine learning approach, this thesis explores models capable of
directly handling stochastic random variables. An initial analysis identified three models
that can explicitly represent stochastic processes: Bayesian Neural Networks (BNNs),
Gaussian Processes (GPs) and Bayesian (Hierarchical) Models (BMs). However, these
models are not ideal for very large datasets. As an alternative ML-based regression
models can be used to parameterize one or more distributions from which delay samples
are drawn. This approach becomes especially relevant when the dataset spans months of
operational data and when training time is critical.

Bayesian Neural Networks (BNNs) treat each parameter as a random variable enabling
them to estimate uncertainty in predictions. Unlike traditional neural networks, which
provide fixed outputs, BNNs generate a distribution of predictions offering insights into
the model’s confidence. [MKH18]

Gaussian Processes (GPs) are non-parametric models that employ multivariate Gaussian
distributions and kernel functions to predict data with spatial or temporal correlations.
They are particularly effective in tasks such as time series prediction or spatial mapping,
where relationships between data points are crucial [SSK18, WYI+22].

Bayesian models provide a robust framework for constructing probabilistic representations
of stochastic processes, such as delay generation. They are especially effective when strong
priors - beliefs or assumptions about a parameter based on past knowledge - and domain
expertise guide the modeling process. Features like hierarchical modeling and pooling,
along with a variety of probability distributions, enable Bayesian models to efficiently
capture complex processes. Furthermore, the learned parameters can be used to identify
delay-contributing factors, allowing statistical testing on these variables. Bayesian models
are typically fit using Markov Chain Monte Carlo (MCMC) methods, but these methods
can struggle with large datasets. In such cases, approximate methods like Variational
Inference (VI) can be employed to estimate posterior distributions, making Bayesian
models more practical for large-scale applications [VDSDK+21a].

Although Gaussian processes can model stochastic variables, they are not well suited for
this specific problem due to the nature of the input features. Many features, such as
the segment or stop a train is passing through, are categorical rather than continuous
and do not exhibit the spatial correlations required for Gaussian processes to perform
effectively [WYI+22]. For instance, two train tracks might be geographically close but
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differ significantly in capacity or error rates due to variations in age or condition. Here,
spatial proximity does not imply shared properties. While the temporal component
of the data may hold some relevance - since primary delays used in this thesis exhibit
auto-regressive patterns - this property is not utilized in the current setup. Consequently,
the limitations of Gaussian processes outweigh their potential benefits in this context.

Bayesian Neural Networks (BNNs), Bayesian Hierachical Models, and Bayesian Networks
share a common ability to handle uncertainty and stochastic processes. However, given
the inherently unpredictable and highly stochastic nature of primary delays as well as the
heterogeneous dataset, deploying a large model like a BNN is unnecessary for this task.

Instead, Bayesian Hierachical Models were found to be the best inherently stochastic
solution. They provide the flexibility and precision required to model complex relation-
ships between variables while maintaining interpretability. Additionally, the resulting
parameter distributions can be used for further investigation.

For larger datasets, however, deterministic machine learning models are much more
efficient to train. A variety of models, such as Support Vector Machines (SVMs), Neural
Networks (NNs), or tree-based methods, could be employed. Given the high number
of categorical features in the dataset, the CatBoost model was chosen. CatBoost is a
gradient boosting toolkit that is particularly effective for handling categorical features
[DEG18].

3.3.1 CatBoost - Gradient Boosting Decision Trees
Gradient Boosted Decision Trees (GBDT) are a popular ensemble method which uses
multiple decision trees trained in sequence and can therefore achieve state-of-the-art
results in numerous practical tasks [DEG18]. In each iteration the ensemble learns the
new tree by fitting the negative gradient which is also known as the residual errors. This
is a method known as gradient boosting [KMF+17]. CatBoost is a gradient boosting
library that has improved handling of categorical features and outperforms other libraries
like XGBoost or LightGBM [DEG18]. As the dataset in this thesis mostly contains
categorical features, a compatible library, which is also tuned towards categorical features,
was chosen. The most prominent technique in machine learning to encode categorical
features is one-hot encoding which is the process of replacing a categorical feature with
n labels into n binary columns. High cardinality features (like, e.g., “Train ID”) when
one-hot encoded lead to a large number of sparse binary columns which is not desired.
[PGV+18]

Another approach is to substitute the category label with a numeric value which is
computed via a target statistics (TS). An approach to deal with the categorical feature
i is to substitute the category xk

i of k-th training example with a numeric feature x̂k
i

derived form the TS. The expected value of the target y given the category is often used:

xi
k ≈ E(y | xi = xi

k) (3.3)
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A greedy approach would be to calculate this by taking the average of all samples. For
low frequency categories the average is noise, which is why a prior p defined as the average
target value of the dataset is added:

xi
k =

∑︁n
j=1 1{xi

j = xi
k} · yj + ap

p
∑︁n

j=1 1{xi
j = xi

k} + a
(3.4)

Where a is a tunable parameter. The prior value is especially interesting later for new
unseen data. The downside of this algorithm is that the TS is calculated using the target
y which leads to target leakage. In order to fix this problem, Catboost uses a technique
called ordered TS where an artificial time, realized as random permutation, is used to
compute the TS based on observed history. To reduce variance, multiple permutations
are used.

Catboost also utilizes combinations of categorical features to capture high-order depen-
dencies between them. In the delay modeling case, features like the train category and
segment are often related. Therefore capturing high-order dependencies is desired for the
PDIM. Due to the state-of-the-art performance of Catboost on heterogenous datasets
with many categorical features, this was chosen as the ML based model.

DistBoost - Parametrized Distribution Model Architecture

As Catboost is a deterministic ML-model, it first needs to be adapted in order to work
as a stochastic model. In total, three different Catboost models were trained, the mu,
sigma and zero model. The zero model is a binary classification model trained on the full
dataset, the target y represents if a delay is either zero or not. Zero delays were modeled
separately as the log-normal distribution used to sample the delays cannot represent the
heavy zero inflation present in the dataset. Later the class probabilities of the binary
classification were used to model zero delays.

The mu and sigma models are trained on only positive delays as the zero delays are
already modeled by the zero model. As explained in the distributions section, the
log-normal distribution has the best overall fit to the positive delays. The log-normal
distribution has the property that if log(X) is normally distributed then X is log-normally
distributed.[DS12] This property is utilized by log-transforming the target. For each data
point xi the target which represents the primary delay y is now ŷ = log(i) which makes
it normally distributed. Therefore, the mu model estimates the target µi...µn for each
data point i in the dataset:

µi = yî (3.5)

Depending on the chosen features, some events may share identical values with others,
leading to identical predictions due to the model’s deterministic nature. However, to
simplify the training process and allow for future feature expansion, each event is assigned
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its own prediction. This approach leverages the predictive capabilities of ML models. To
predict the mean, the regression-based Catboost model is used. After training the mu
model, the variance is calculated as such:

σ2
i = (yî − µi)2 (3.6)

Then, the sigma model is trained to estimate the residuals which is equivalent to the
standard distribution of the normal distribution.

In the prediction phase, multiple samples are generated for each event. These samples
serve as an inputs for multiple simulation experiments for the respective event i. First, the
class probabilities of the zero classifier are used as parameter pi in a Bernoulli distribution
and n samples are generated:

Xis_zero ∼ Bernoulli(p) (3.7)

Then, the same amount of n samples per data point is generated by drawing from a
normal distribution:

Xdelay ∼ exp(N (µ, σ2)) (3.8)

The delays are then masked with zero by the zero samples. This setup allows for more
flexibility in choosing a distribution as zeros are modeled separately. Further, any ML
regression model could be utilized to parameterize the distributions. From here on, the
parametrized distribution model trained with Catboost will be referred to as DistBoost
short for Distribution Boosting.

Ensemble Model Architecture

Another approach to introduce stochasticity into a deterministic model is by constructing
an ensemble of multiple models. While this method is more of a workaround than
a true representation of underlying distributions, it remains a valuable technique -
particularly because it leverages an ML model in its pure form. To introduce randomness,
each submodel is trained with variations in the process, ensuring that each model
produces different outputs. CatBoost provides multiple ways to introduce stochasticity
during training, thereby enhancing diversity among models. Additionally, model-agnostic
approaches such as training data sub-sampling, can also be applied.

Each CatBoost model in the ensemble is assigned a random seed, which influences
various procedures during training. The most relevant of these will be briefly presented.
Bootstrap sampling is a technique that assigns weights to the samples used for evaluating
splits. CatBoost offers multiple sampling methods, such as Bernoulli sampling, which
either includes or excludes certain samples. This approach corresponds to stochastic
gradient boosting and has the advantage of accelerating computation since not all samples
need to be evaluated. Since CatBoost is already a fast training algorithm, Bayesian
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bootstrap is used instead. In this approach, each weight is defined as w = at, where a is
independently generated as − log(Uniform(0, 1)) and t is a tunable hyperparameter. A
higher t leads to more aggressive bagging, resulting in a more diverse or unpredictable
subset of data [Dev24]. Additionally, since CatBoost employs ordered boosting and
target-based encoding, the encoding process is influenced by the order of permutations,
which are also affected by the random seed.

A challenge with the ensemble architecture is that a separate model must be trained for
each sample. Since 100 or more samples are often required, this leads to high compu-
tational costs. Although CatBoost models train relatively quickly, this computational
burden must be carefully considered.

3.3.2 Bayesian Hierarchical Models
Bayesian statistics is an approach to statistics, in which one has background knowledge
and initial beliefs about the parameters commonly known as the prior. These priors can
be constructed by subject experts. If there are strong assumptions and little data, one can
use an informative prior and if the assumptions are weaker, a weakly informative prior.
If no assumptions are made, flat priors can be used. These parameters are then updated
utilizing a likelihood function in combination with a dataset. The resulting parameter
distributions are commonly referred to as the posteriors [VDSDK+21a]. While usually a
lot of research and discussion focuses on the prior, when sufficient data is available and
flat priors are chosen, the likelihood becomes the dominant factor [VDSDK+21b].

In contrast to the frequentist framework, where for each parameter a single point estimate
is inferred, the Bayesian framework represents each parameter as a probability distribution
[VDSDK+21b]. Therefore, Bayesian models can "formulate epistemic uncertainty as a
probability distribution over the model parameters" [ZW17]. These posteriors for complex
models were mostly intractable. However, with Markov Chain Monte Carlo (MCMC)
methods, it became possible to sample from these complex posteriors using computer
simulations. As a result, the posteriors are not represented as continuous distributions,
but approximated through samples drawn from the Markov Chain. It is important to
note, that the samples from the Markov Chain are auto-correlated, thus dependent on
the previous ones. This becomes relevant when selecting a specific subset of n samples
for the simulation.

Apart from prior predictive checks, likelihood function determination and chain diagnos-
tics, the last part in evaluating a model is posterior predictive checking. With help of
the models trace, one can predict new values from the posterior predictive distribution
and observe if the simulated data resembles the observed data.

Model Architecture

The Bayesian model also requires three different submodels to efficiently sample new
delays. While theoretically one model would be sufficient, and could even lead to the
same predictions, the task was split into three subtasks in order to improve performance.
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First, a Bernoulli model was developed to predict if the delay is zero or not. The two
other models were used to predict either stop or run events.

The following section presents the final model architectures. Four different model variants
were developed and evaluated: the first, referred to as the baseline model, is a simple
model with few parameters, while the second is a more advanced variant. First, the
baseline variants will be described. The baseline zero model samples a Bernoulli event
which has one parameter p representing the probability of a zero event. All binary delays
are considered to obtain the posterior of this submodel:

is_zero ∼ Bernoulli(p) where p ∼ Uniform(0, 1) (3.9)

is_zero =
{︄

1, if delay = 0
0, otherwise

(3.10)

For the stop and the run model we have the same baseline architecture. They are both
models with a log-normal likelihood, the parameter µ representing the mean of the
log-normal and the parameter σ2 representing the variance. This results in two different
posteriors for µ and σ: one for the stop model and one for the run model. Since both
parameters, mu and sigma, in the log-normal must be strictly positive for the priors, a
half normal distribution with sigma equal to five was chosen. This can be considered a
relatively flat prior:

µ ∼ HalfNormal(5) (3.11)
σ2 ∼ HalfNormal(5) (3.12)

delay ∼ LogNormal(µ, σ2) (3.13)

The resulting baseline model has therefore only five parameters. New samples can be
generated from the model as follows:

is_zero ∼ Bernoulli(p) (3.14)

delay =

����
0, if is_zero
LogNormal(µstop, σ2

stop), if ¬is_zero ∧ event = stop
LogNormal(µrun, σ2

run), if ¬is_zero ∧ event = run
(3.15)

Apart from the baseline models, three additional variants were developed for each
submodel, referred to as advanced-1, advanced-2 and advanced-3. The advanced-1 model
is visualized in 3.1. In this variant, the dimensions of the parameters have changed. For
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example, the p parameter now has the shape (passenger, type), resulting in six different
parameters for p, which model the Bernoulli distribution.

(a) Zero Model (b) Stop Model (c) Run Model

Figure 3.1: Visualization of the advanced-1 model. Each bubble represents a random
variable, labeled with its name and specified distribution. The surrounding square
indicates the shape of the random variable. An arrow indicates that the variable is used
as a parameter of another distribution or if the target bubble is light gray, that it is part
of the likelihood function. In the case of the zero model, we have a parameter p that is
uniformly distributed with a shape of (passenger (2), type (3)). This variable serves as a
parameter p of a Bernoulli distribution, which models the likelihood of an delay being
zero.

In the advanced-3 model family, the dimensionality of each parameter was further ex-
panded. The shared mu across all segments and stops now incorporates the detailed
feature "category" instead of just differentiating between passenger and freight. Addition-
ally, for each segment or stop, a normally distributed offset µsegment is learned, which is
then added to µshared. The same was done for µhour which represents an learnable offset
for each hour of the day. These additions can result in negative values for the overall µ,
which would break the model, as the µ of the log-normal distribution must be positive.
One possible approach to ensuring positivity was to take the exponential of the result.
However, this significantly slowed down sampling. To address this issue, the data was
log-transformed, allowing it to be modeled as a normal distribution which allows negative
values as µ. As shown in Figure 3.2, the µsegment of the advanced-3 variant follows a
normal distribution, meaning that the sum µoffset + µsegment can be negative.

In addition to the segment offset, a regression-based component was implemented, where
numerical features such as trainpart_speed are multiplied by a parameter such as
βtrainpart_speed. In the model visualizations, only the dimensions of each parameter
are shown, but not how they are combined into the input parameters of the likelihood
function. Therefore, the final formula for calculating µ in the advanced-3 stop model is
presented separately:
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(a) Zero Model

(b) Stop Model

(c) Run Model

Figure 3.2: Visualization of the advanced-3 models. From this visualization the function
how the different parameters are combined is not visible please refer to Equation 3.16.

µ = µshared + µsegment + µhour

+ βdistance_geo · distance_geo
+ βtrainpart_speed · trainpart_speed
+ βspeed · speed

(3.16)

The advanced-2 variant is quite similar to the advanced-3 variant but missing the hourly
offset (mu_hour) in all submodels, and for the stop model does not contain the regression
components. Due to the large size of the model visualizations, this variant can be found
in the Appendix A.

Bayesian models cannot inherently handle missing values. Therefore, these missing values
were processed using a custom logic. The maximum allowed speed in each segment was
filled with the median value across all trains and the same approach was applied to the
train part speed. The values for the distance between two OCPs, the number of platform
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edges, and the number of siding tracks were set to zero, as these variables are used in the
regression component, where a zero value has no impact on the predictions.

3.4 Simulation Model
The simulation model used in this thesis is the simulator RailwaySim presented in
[RWJ+20]. As explained in Section 2.4, it is an agent-based macroscopic simulation
tool. Each of the n generated primary delay samples from each model will be injected
into the simulation model. The model tracks multiple values for each event. The total
delay represents the absolute deviation from the simulated schedule for a given train at a
specific event after the event has been simulated. In contrast, the initial delay refers to
the absolute deviation before the event has been simulated. The primary metric logged
will be referred to as the secondary delay which is defined by:

secondary_delay = total_delay − delay_initial − primary_delay

With this metric, the primary delay samples from the total additional delay can be easily
recreated by adding the primary delays. As the simulator sometimes did not terminate
with very large primary delays, samples above 12 hours were cut off.

In order to compare models with the simulator, it is first necessary to understand how
the simulator works and secondly, how it responds to delay inputs. Therefore, first only
zero delays or the true primary delays were injected and analyzed. In Figure 3.3 the
distribution of the true primary delays and the remaining secondary delays are plotted.
The secondary delays are calculated by subtracting the primary delay from the additional
delay. The additional delay is the deviation of the actual data from the scheduled data.
Figure 3.3 clearly shows that, with the current configuration of the simulation system,
most delays are primary delays.

To understand how these delays affect the simulation system, delays were injected in
stages before utilizing the PDIMs: first, zero delays and then the actual primary delays
the model was trained on. In Figure 3.4 the distribution of simulated secondary delays
created by these two configurations are shown. Only very little positive secondary delays
arise with both configurations. A secondary delay is the total delay subtracted by the
initial and primary delay. A negative secondary delay thus explains that the trains
in the simulator were able to compensate for the primary delay injected at that step.
Consequently, most of the delays observed within the simulation system are actually
primary delays.

As the primary delays are subtracted from the additional delay to compute the secondary
delays, they remain present in the secondary delay distribution. For example, if the
additional delay is zero and a primary delay of 10 is deducted, the resulting secondary
delay is -10. Consequently, analyzing the full distribution of additional delays leads to a
re-evaluation of the injected primary delays.
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(a) True Primary Delays (b) True Secondary Delays

Figure 3.3: Histogram of the true primary delays and true secondary delays. Most of
the additional delays are in fact negative and therefore also the true secondary delays
are mostly negative. The data has larger ranges but to increase visibility outliers are
not shown in these charts. Furthermore, the bin size as well as the ticks were hidden to
provide data anonymity. In Figure (b) it becomes apparent that only very few positive
secondary delays exist.

Conversely, validating the model using only positive secondary delays results in a signifi-
cant loss of information, as illustrated in Figure 3.4. Therefore, the analysis will consider
both positive and negative secondary delays produced by the simulator. The key question
is which model can inject a similar amount of delays while still yielding a comparable
distribution of secondary delays.

(a) Zero Primary Delays Injected (b) True Primary Delays Injected

Figure 3.4: Comparison of the simulated secondary delays with the true delays or the
zero delays injected.
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3.5 Validation
Validation will be divided into two approaches: Theoretical Performance and Simulation-
Based Validation. Theoretical Performance involves testing and validating metrics that
assess how well the sampled primary delays correspond to the true delays. In contrast,
Simulation-Based Validation injects the sampled primary delays into the simulation
system and compares the resulting secondary delays either to the true secondary delays
or to those generated by injecting the true primary delays instead of the sampled ones.

3.5.1 Theoretical Model Performance
In order to evaluate and compare the models, appropriate evaluation metrics must be
defined. These metrics should not only capture predictive accuracy, but also measure the
diversity of the generated samples, thereby reflecting the stochastic capabilities of the
models. Lastly, we will look at the overall fit of the sample distribution compared to the
true distribution. Other metrics like runtime are also relevant.

Error Metrics

For each dataset with features x and true delays y, where y consists of delays y1, y2, . . . , yi,
the aim is to predict the delay ŷ.

The most commonly used metrics in regression tasks are the Root Mean Squared Error
(RMSE):

RMSE(y, ŷ) =

√︄∑︁N−1
i=0 (yi − ŷi)2

N
(3.17)

and the Mean Absolute Error (MAE):

MAE(y, ŷ) =
∑︁N−1

i=0 |yi − ŷi|
N

. (3.18)

RMSE places greater emphasis on larger errors due to the squaring operation, whereas
MAE treats all errors equally. Since our models should prioritize accurate predictions,
particularly for extreme values, a custom error metric is required that assigns higher
weights to larger true values. This can be achieved through a custom weighted error.

The weight wi can be set to the true value yi, making errors relative to the prediction
target. Given the large range of values, an alternative is to set wi to log(yi + 1), where
the additional term ensures that zero delays do not result in undefined logarithmic values.
The weighted MAE is then defined as:

MAEweighted(y, ŷ) =
∑︁N−1

i=0 wi|yi − ŷi|
N

. (3.19)
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Other approaches, such as evaluating zero-delay predictions separately, computing a
quantile error or measuring the number of exact predictions within a certain tolerance,
were also considered. However, these methods were found to be less suitable for the task
compared to the weighted MAE.

Evaluating Sample Diversity

Apart from having a low error on the test data, the model should create diverse predictions.
The first approach was to understand the spread of the error metrics across multiple
sample datasets. This is further defined as the span of a certain error metric, for example,
the RMSE-Span is defined as deviation between the largest and lowest RMSE between
the different sample datasets generated by one model. This is an important metric,
especially to understand the performance of the best sample. However, there can be high
prediction diversity, although the error metrics are similar across datasets. Therefore,
the pairwise distances were calculated between all of the sample datasets.

Suppose there are n samples in a prediction dataset, where each sample represents a
delay profile observed over a full day of train traffic. Let each sample be represented as a
vector, with each element of the vector corresponding to the delay observed at a specific
train event.

The distance between two sample vectors u and v, representing two different delay profiles,
can be calculated using a distance function, denoted d(u, v). This distance function
quantifies the dissimilarity between the two delay profiles by comparing their individual
delay values across the stops.

In the context of the delay dataset, two common distance metrics, Euclidean distance
(L2 Norm) and Cityblock distance (L1 Norm) will be used to compute the pairwise
diversity between delay profiles. These norms have similar properties as the RMSE (L2)
and MAE (L1) and therefore align with our other metrics. The L2 puts a focus on the
outlier deviation between the samples while the L1 puts an equal emphasis on each pair.
Concluding, L2 is well suited for measuring how diverse sampled outliers are while L1 is
more appropriate for detecting whether there are overall large differences between the
samples. The distance across all samples should be maximized to achieve high sample
diversity.

Distributional Analysis

So far, the metrics which define the fit according to a point-wise error and the diversity
of prediction were presented. These metrics do not capture information about the overall
distribution of delays which is crucial for proper delay sampling.

The quality of the chosen distributions is assessed by determining how similar the
distribution of primary delay samples is compared to the empirical true distribution.
Further, it is of interest to evaluate the fit, if the dataset is subsetted along multiple
axes such as hour of day, segment or event type. To compare these distributions, the
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statistics presented in Section 3.2 will be reused, more specifically the KS-Statistic and
the Cramér-von-Mises Statistic.

3.5.2 Model Performance Simulation Loop
Performance metrics, such as RMSE, provide insight into the theoretical performance of
the model. However, due to the stochastic nature of the processes involved, achieving a low
RMSE value is not always feasible. The primary objective of the model is its integration
into the simulation model. Consequently, model validation should be performed using
the delays generated by the simulation model when primary delays are introduced.

Various metrics can be used to evaluate the model. For passenger and freight traffic
the amount of acceptable delay differs significantly. There are two types of metrics:
one measures how well the simulated delays (created by adding PDIM delays to the
model) match real-world operations, and the other one evaluates how accurately the
model reflects key factors important to railway companies and passengers. For the former,
delays at the most granular level, specifically at each operational control point (OCP),
are crucial. For the latter, passenger train delays are evaluated at stops, while for freight
trains, the total delay is considered. For passengers, the location of the delay is often
irrelevant, as only the overall impact matters.

Ability to Reproduce Real-World Data

Given a test dataset, the simulated delays are considered accurate if they reproduce the
same additional delay at each OCP. This can be evaluated using the true data from the
test set. However, the challenge lies in determining whether the error originates from
the PDIM or the simulation model. Therefore, the primary comparison will be between
the delays generated by the simulation model using the true primary delays, which also
serve as input for PDIM inserted into the simulation. This approach helps eliminate
simulation-related errors, allowing for a clearer interpretation of the results. Ideally, the
delays produced in this configuration would match the true delays, but this is not the
case due to the inherent margin of error in the simulation model.

However, even if the model achieves this level of precision by achieving a very low error,
it may indicate overfitting, as each simulation day contains a specific sample of primary
delays. A model capable of exactly reproducing every delay would fail to generate diverse
scenarios, which are essential for meaningful simulations that run multiple times.

An alternative perspective is to evaluate whether the model achieves a low error compared
to actual data in one or more simulation runs. If this occurs, it could indicate that the
model successfully simulated diverse scenarios and in some cases, the scenario closely
resembled reality. The issue with this approach is that the solution space due to its
stochastic nature is possibly quite large which can lead to limitations given the small
number of samples. To further evaluate the model, the overall distribution of observed
and simulated delays can be compared, providing a more comprehensive assessment.
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CHAPTER 4
Results

4.1 Training
The models were trained on a M1 Macbook Pro equipped with a 10-core CPU (8
performance cores and 2 efficiency cores) and 16GB of RAM. For all models the dataset
was split into a training and a test set, while for the ML based models the dataset was
further divided including a validation set to implement early stopping. When training
models a training test split such as 80/20 is common. Though for the evaluation in
combination with the simulation model a full day of operations is needed. Therefore the
data was split into a training day (December 14. 2022) and a test day (December 15.
2022). For the ML based models the training set was the further split by a 80/20 ratio
into a train and validation set.

The number of samples predicted for each event is a trade-off between evaluation runtime
and increased robustness from additional experiments. Ideally, this number should be
as high as possible while still allowing all experiments to be simulated within the given
time frame. For this thesis, each model was configured to generate 300 primary delay
sample datasets for the test day.

Below, the training process of the models, including the final model choice and hyperpa-
rameter tuning, will be elaborated on.

4.1.1 Catboost - Parametrized Distribution Model
The model design of the DistBoost explained in section 3.3.1 was implemented using
the CatBoost Python package, which supports both regression and classification for the
submodels [Tea25]. To optimize the hyperparameters of the CatBoost model, Optuna,
an open-source hyperparameter optimization framework, was used. Optuna efficiently
tunes the model by exploring a defined search space of hyperparameters, which in this
case included:
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• Learning rate (learning_rate): A float value between 1e-3 and 0.1, optimized on
a logarithmic scale to account for wide variations.

• Depth (depth): An integer value between 1 and 10, controlling the depth of the
trees.

• Subsample (subsample): A float value between 0.05 and 1.0, determining the
fraction of samples used to build each tree.

• Colsample by level (colsample_bylevel): A float value between 0.05 and 1.0,
specifying the fraction of features to sample at each level of the tree.

• Minimum data in leaf (min_data_in_leaf ): An integer value between 1 and
100, controlling the minimum number of samples required in a leaf node.

The number of iterations (trees) was fixed at 2000, as the learning rate and number
of iterations are tightly coupled and runtime is not a concern for this model. Since
theoretical performance is not the sole evaluation method, it is of interest how different
loss functions affect other metrics, two final models with optimized parameters but
different loss functions (RMSE, MAE) were trained.

Table 4.1 lists the best parameters for each submodel. It shows that no boundaries of
the search space were reached, except in the MAE-zero variant, where the maximum
depth of the search space was attained. This indicates that the initial starting points for
hyperparameter optimization were satisfactory. Furthermore, the table highlights the
significant differences in optimal hyperparameters not only within the submodels, but
also between the different loss functions, which suggests that hyperparameter tuning was
beneficial.

Figure 4.1 presents the objective value for each optimization iteration. It illustrates that
in most cases the optimal hyperparameters were found within ten iterations. Therefore,
fewer hyperparameter iterations could be sufficient in future studies.

Table 4.1: Best parameters after optuna optimization.

MAE RMSE
mu sigma zero mu sigma zero

Hyper Parameter
learning_rate 0.05 0.02 0.01 0.07 0.09 0.08
depth 8.00 9.00 10.00 6.00 4.00 8.00
subsample 0.78 0.77 0.67 0.60 0.95 0.71
colsample_bylevel 0.97 0.67 0.75 1.00 0.13 0.75
min_data_in_leaf 44.00 89.00 65.00 62.00 58.00 96.00
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Figure 4.1: Optuna catboost study results. Each dot represents the objective value for
each iteration.
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4.1.2 Catboost - Ensemble Model

The CatBoost ensemble model, as demonstrated later, exhibits low pointwise errors in
its most basic setup. However, the inter-sample diversity is relatively low. Inter-sample
diversity measures how much variation there is within the multiple sample datasets on a
pointwise basis. A detailed introduction to this metric is provided in Section 4.2.2.

Before improving inter-sample diversity, it is essential to review the approaches used to
measure it. The error metric span and the mean inter-sample distances, calculated using
either the City Block or Euclidean distance metrics, will be used for this assessment.
These metrics will serve as the basis for comparing different strategies to increase or
decrease the diversity of ensemble model predictions.

Rotating the seeds of the CatBoost model only led to a small divergence within the ensem-
ble. Therefore, a grid search experiment was conducted to evaluate which parameters had
an influence on the variability of learners in terms of RMSE. The grid search tunes the
hyperparameters of a CatBoost model by iterating over various loss functions ("RMSE"
and "MAE"), bagging modes ("Bayesian" and "Bernoulli") and bagging temperatures in
the Bayesian case (0, 1, 10) or subsampling in the Bernoulli case [0.3, 0.7, 1] to identify
the optimal combination for the model. This led to only very small divergences between
the generated samples. Therefore, training the models on fractions of the training dataset
(0.3, 0.7, and 1) was also added to the grid search exploration space.

The large grid search conducted that the loss function and the subsampling of the training
data has the largest effect while the bagging modes only have little effect. This could
be due to the fact that with 1000 iterations and many splits, every data point is visited.
Details on this can be found in the Appendix B.

Therefore, Table 4.2 shows only the grid search over the two proposed loss functions
and subsampling fractions for the training data. To get a general overview over the
performance, all four diversity metrics are included in the table, as well as the Mean
Weighted MAE. The first observation is that the RMSE loss function leads to a higher
WMAE. This is because RMSE penalizes large errors and favors larger predictions, while
the model trained with the MAE loss function produces more conservative predictions.
Later, this will be analyzed in detail in the theoretical results section. As expected, the
subsampling consistently leads to higher pointwise errors, while it generally increases
diversity in terms of the distance metric. Though this trend is less clear than the decrease
in performance. This raises the question of how the different diversity metrics relate.
The Euclidean and City Block distances as well as the MAE-Span have a high correlation
and therefore lead to the same conclusions. Only the RMSE-span has a different trend.
The goal of this analysis is to decide on the parameters for the CatBoost ensemble model
such that there is an acceptable trade-off between low error and high diversity. For
the RMSE-loss-based variant, a subsample value of 0.4 was chosen due to a reasonable
trade-off between error and diversity. For the MAE-loss-based variant also 0.4 was chosen
to ensure consistency, even though 0.6 subsample rated had more sample diversity.
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Table 4.2: Subset of the full grid search for the CatBoost ensemble model. The Table is
sorted by the Euclidean distance.

Mean-WMAE Euclidean Cityblock MAE-Span RMSE-Span
Distance Distance

Loss Subsample
RMSE 0.2 84.06 12355 1234868 2.42 3.67

0.4 82.23 9486 861122 1.11 1.73
0.6 81.68 7681 678555 0.96 1.89
0.8 81.40 5366 556722 1.23 1.16
1.0 80.99 3705 333868 0.58 0.73

MAE 0.2 101.19 2969 301168 0.12 1.78
0.6 101.05 2390 207340 0.15 2.98
0.4 101.31 2058 232882 0.13 1.14
0.8 101.30 1716 167237 0.15 1.20
1.0 101.06 1609 157057 0.13 2.28

4.1.3 Bayesian Models

To train the Bayesian models, the probabilistic programming library PyMC [APAC+23]
was used. The library provides a Python API to build Bayesian models. It includes
state-of-the-art inference algorithms including MCMC based No-U-Turn Sampler (NUTS)
and Variational Inference (VI). Due to the limited model complexity, VI was not used in
this thesis, although training time could have been improved.

All four Bayesian models proposed in the method section were trained. These model
variants were tuned for 2000 iterations, followed by drawing 1000 samples. Four chains
were sampled in parallel. Training of MCMC-based Bayesian models requires careful
checking of the sampling procedure. For this purpose, there are three main statistics to
check: Divergences, Effective Sample Size (ESS) and R-Hat statistic.

Often, wrong priors or too few tuning iterations lead to the model having divergences
in the final sampling procedure. Divergences are drawn samples, where the sampler
was not able to make a valid move across the posterior distribution. Therefore, the
resulting points are possibly not representative samples from the posterior. [Dev25]
During the model design phase, divergences often occurred while sampling, but with
proper calibration of priors and the correct number of tuning steps these divergences
were nearly eliminated. Only two were remaining in the stop submodel of the advanced-3
family.

The next thing to check is the Effective Sample Size (ESS). In Bayesian inference, MCMC
algorithms generate samples that are correlated. This is due to the nature of MCMC
chains where each sample is dependent on the previous one. If the samples auto-correlate
too much, the chains need to be prolonged to reach a high ESS. [GCS+13] This value
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should be as high as possible, although in most cases values above 1000 are sufficient.
[Bü17]

Lastly we need to check the R-hat value, which provides information on the convergence
of the chains. If the R-hat value is considerably greater than 1, precisely larger than 1.01,
the chains have not yet converged properly. [GR92]

In Table 4.3 the statistics of the MCMC sampling procedure can be found. First of all, it
can be observed that model complexity varies heavily, ranging from models with only
five parameters to models with 35k parameters.

Each parameter in the model is more complex than in traditional machine learning, as it
consists of a trace representing the parameter’s posterior distribution. To assess model
performance, we calculated the mean of the ESS metric across all parameters within
a model family, as well as the number of parameters with an ESS below 1,000. Since
each PyMC model comprises three submodels - run, pass, and zero - the results are
aggregated across all submodels. In the table, mean values (e.g., for the ESS metric)
represent averages across all parameters from these three submodels.

For the advanced-2 models, only a few parameters exhibit R-hat and ESS values that
deviate from the desired thresholds. However, in the advanced-3 models, more than 100
parameters show lower ESS and higher R-hat values than expected. This discrepancy
is likely due to the hierarchical structure of the model, which may be less reliable for
categories with low sample sizes.

Table 4.3: Training Statistics for the Bayesian Models.

#Parameters Mean ESS Min Ess #R-hat > 1.01 ESS < 1000
baseline 5 7356 3711 0 0
advanced-1 15 12474 10772 0 0
advanced-2 29051 18181 128 22 23
advanced-3 34920 15648 230 127 204

4.1.4 Training & Inference Runtimes
Before evaluating the models’ performances and their predictive and stochastic capabilities,
the training and inference times will be analyzed.

Bayesian

First, the training and inference times for each Bayesian variant and submodel will be
presented, as their durations are of particular interest. As shown in Table 4.4, a significant
portion of the training time is spent on the Zero model, which separately models zero
delays. This is especially true for more advanced hierarchical models. In these cases,
a sigmoid function must be applied after combining the different parameters to ensure
that p remains within the valid range [0, 1], which likely slows down the sampler. Apart
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from that, the simpler models train very quickly, whereas the more complex ones require
significantly more time.

Table 4.4: Training times in seconds for the Bayesian models. Training consists of 2000
tuning steps and 1000 sample steps across 4 chains.

Zero Stop Run Total Time
baseline 7s 3s 5s 15s
advanced-1 148s 15s 10s 173s
advanced-2 1709s 182s 337s 2228s
advanced-3 2228s 853s 503s 3584s

Inference, in this case more commonly referred to as posterior predictive sampling, is
relatively fast for almost all models, ranging from approximately one to three minutes,
depending on model complexity, as shown in Table 4.5.

Table 4.5: Posterior predictive sampling duration for the Bayesian models.

Stop Zero Run Total Time
baseline 8s 30s 30s 68s
advanced-1 13s 57s 31s 101s
advanced-2 15s 114s 41s 170s
advanced-3 18s 122s 53s 193s

DistBoost

Before analyzing the runtime of the CatBoost model, which parameterizes the log-normal
distribution, the runtime of the hyperparameter optimization is examined. A total of 50
trials were conducted, each DistBoost model was trained for 2000 iterations to determine
the optimal hyperparameters. Optimizing the CatBoost model with RMSE loss took
1 hour and 54 minutes, while the MAE version required 3 hours and 3 minutes. As
observed in the optimization analysis, fewer trials would have been sufficient, and the
optimization process does not need to be rerun for every new dataset.

CatBoost is a highly optimized ML library, therefore training and inference are very
fast, the training of the model takes only 170 seconds and inference under 3 seconds.
The detailed benchmarks can be found in Table 4.6. Further, it is very fast to generate
new samples by drawing from the predefined distributions with the previously predicted
parameters.

Ensemble

Lastly, the training times for the CatBoost ensemble model are presented. The hyperpa-
rameters of the CatBoost ensemble model were not optimized, instead, the case study in
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Table 4.6: Train and predicting times for the catboost MAE model in seconds.

Zero Mu Sigma Total Time
train 119s 26s 25s 170s
pred 1s <1s <1s <3s

Section 4.1.2 determined the hyperparameters that ensure a balanced trade-off between
error performance and prediction diversity. These models have the longest training times,
since a dedicated model needs to be trained for each sample dataset. Due to these
prolonged training times, the number of iterations was limited to 1000, as observations
showed that the best model is usually found within the first 1000 iterations. Training
and prediction for the MAE variant took 92 minutes, while the RMSE variant required
67 minutes.

The parameterized CatBoost model is by far the fastest to train and scales best for larger
datasets. In contrast, the CatBoost ensemble model becomes particularly problematic
when more samples are needed as its training time increases linearly with the number
of desired samples. Bayesian models can be fast to fit when they are simple, but more
complex ones require significant tuning and are susceptible to poor model definitions,
leading to slow convergence. While the CatBoost ensemble model scales poorly with
sample size, Bayesian models scale poorly with dataset size, as each sampling step requires
evaluating the likelihood over the entire dataset. In contrast, the parameterized CatBoost
model can generate an infinite number of samples per input at a low computational cost,
making it the most efficient model in terms of scalability and performance.

4.2 Theoretical Performance

Theoretical performance refers to all metrics that can be evaluated without incorporation
of the delays into the simulator. As described in the Method Section 3.5, these metrics
include error metrics, evaluation of prediction diversity and the overall distribution error.

4.2.1 Error Metrics

In this section, the results based on classical regression and classification error metrics
are presented. What differentiates this section from a standard machine learning model
results analysis is that, instead of a single e.g. mean error metric, multiple mean errors
are calculated for each sample dataset. Since 300 samples were generated for each model,
this results in 300 error metrics for different samples. Therefore, the metrics must be
aggregated. The focus will be on reporting the mean, the best value and the span, which
is defined as the absolute difference between the best and worst predictions within the
samples.
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Zero Delay Prediction

Before discussing the MAE, RMSE, and Weighted MAE, an evaluation of zero and
non-zero predictions is conducted. In the Bayesian and parameterized CatBoost models,
zeros are modeled separately, whereas the CatBoost ensemble is purely regression-based.
Since the dataset consists predominantly of zero delays, it is important to analyze these
predictions separately. Therefore, classification metrics are used. Accuracy is not a
suitable metric, as simply predicting zeros would result in a high accuracy score. Instead,
the recall, precision, and macro averaged F1-score are examined separately.

Figure 4.2 presents the confusion matrices for the models. For the ensemble models, which
do not model zero delays separately, it is evident that the loss function has a significant
impact on the range of predicted delays. When using the RMSE loss function, almost all
predicted delays are strictly positive, leading to an imbalanced prediction and resulting in
the worst F1-score (Table 4.7). In contrast, for the ensemble model, the MAE loss function
yields the best performance for the classification task. Furthermore, the Bayesian model
performs worse than the DistBoost models with the advanced variant outperforming
the baseline variant. The DistBoost model shows slightly worse performance than the
ensemble. Only one of these models is displayed, as the classification CatBoost model is
trained on the same loss function.

Table 4.7: Macro averaged F1 Scores for the classification task.

Mean Macro avg. F1
Catboost Ensemble MAE 0.76
DistBoost MAE 0.72
DistBoost RMSE 0.72
PYMC advanced-3 0.64
PYMC advanced-2 0.64
PYMC advanced-1 0.51
PYMC baseline 0.50
Catboost Ensemble RMSE 0.37

These results may seem counterintuitive, as the regression-based ensemble model out-
performs the classification-based component in the classification task. This could be
explained by the fact that class probabilities, rather than direct classifications, are used
to sample zero delays in the DistBoost models. In conclusion, the quality of zero-delay
modeling varies significantly. However, only the RMSE-based ensemble CatBoost model
exhibits performance that is not acceptable.

Regression Based Error Metrics

Apart from achieving low error, it is also essential that the model does not underestimate
the total amount of delays, as this would artificially improve error metrics. Therefore,
we will first present the total amount of injected delays divided by the test set delays.
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Figure 4.2: Confusion matrices for the delay/no delay prediction. The sum of values
in each bin is averaged across all samples. Due to space constraints, the Bayesian
"advanced-1" and "advanced-2" variants are not included.

Table 4.8 shows the evidence that both the Bayesian baseline and the ML-MAE-based
models underpredict the target. In particular, the ensemble captures only 13% of the
total delays, which is clearly too low. In contrast, the ML-RMSE-based models and the
more advanced Bayesian models accurately represent the total amount of delays.

The easiest error metric to interpret is the Mean Absolute Error (MAE), where the value
represents the absolute difference of each prediction. The CatBoost ensemble, as well
as the parameterized CatBoost model, performs best on this benchmark (Table 4.9),
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Table 4.8: Total amount of injected delays relative to the test set with the mean, min
and max value across all 300 samples.

mean min max
Model
Bayesian advanced-2 1.15 0.82 18.71
Bayesian advanced-3 1.14 0.85 18.83
DistBoost RMSE 1.00 0.91 1.15
Ensemble RMSE 0.96 0.91 1.00
Bayesian advanced-1 0.78 0.70 0.97
DistBoost MAE 0.70 0.67 0.73
Bayesian baseline 0.67 0.64 0.70
Ensemble MAE 0.13 0.11 0.16

particularly when the loss and evaluation metric is MAE. This outcome is expected,
as the model optimizes directly for this value. In terms of MAE, the Bayesian models
perform the worst, especially the more complex ones. This may be due to the fact that,
with fewer data points per parameter, the results become less reliable compared to models
that utilize only a few parameters for each prediction.

Table 4.9: Result based on Mean Absolute Error

Mean MAE Best MAE MAE Span
Model
Ensemble MAE 13.69 13.62 0.18
DistBoost MAE 16.46 16.09 0.77
Ensemble RMSE 17.79 17.29 1.54
DistBoost RMSE 20.88 19.66 3.23
Bayesian baseline 22.17 21.66 0.94
Bayesian advanced-1 23.62 22.50 3.81
Bayesian advanced-2 27.95 23.32 254.02
Bayesian advanced-3 27.78 23.61 255.33

The RMSE results are presented in Table 4.10. The Bayesian models - particularly the
simpler ones - perform better in terms of RMSE compared to their performance with
MAE. The WMAE results 4.11 exhibit a similar performance pattern across the models
and do not lead to different conclusions. All tables are consistently sorted by the best
error.

In stochastic models, certain datasets may yield predictions that differ significantly from
the target dataset, as each sample represents only a single realization of a model of the
real process. The span provides insight into the variability of model performance. The
highest variability is observed in the Bayesian models, followed by DistBoost, whereas

45



4. Results

the ensemble models exhibit very low variability. In general, models optimized with an
RMSE loss function display greater variability than those trained with MAE. This is
expected, as previously demonstrated, since MAE-based models primarily predict small
delays.

Table 4.10: Result based on Root Mean Squared Error.

Mean RMSE Best RMSE RMSE Span
Model
Ensemble RMSE 121.60 120.93 1.80
Ensemble MAE 137.47 134.79 3.68
DistBoost MAE 143.44 135.32 34.24
Bayesian baseline 153.25 147.83 29.08
Bayesian advanced-1 281.93 183.90 923.50
DistBoost RMSE 297.36 192.39 704.66
Bayesian advanced-3 1222.38 241.09 116770.39
Bayesian advanced-2 1302.60 260.08 69484.93

Table 4.11: Result based on Weighted Mean Absolute Error with the weight based on
the log delay of the target.

Mean WMAE Best WMAE WMAE Span
Model
Ensemble RMSE 82.22 81.53 1.77
DistBoost MAE 91.69 89.92 4.08
Ensemble MAE 101.18 99.48 2.85
DistBoost RMSE 107.73 101.77 20.46
Bayesian baseline 108.02 107.49 1.31
Bayesian advanced-1 109.38 107.70 6.58
Bayesian advanced-2 119.14 111.23 477.04
Bayesian advanced-3 118.15 112.66 155.53

However, the overall error across all models remains very high. A model that simply
predicts zero delays would have an MAE of 14 making it one of the best-performing
models. This clearly indicates that standard regression metrics are far from ideal. Instead
of solely computing error metrics, it is also important to analyze whether the distributions
of predicted event types align with those observed in the test set, this will be done in
Section 4.2.3.

4.2.2 Sample Diversity
So far, variability within the samples has been measured by the span of the error metric.
In the CatBoost ensemble training section 4.1.2, it was shown that sample diversity
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correlates with the error metric span. However, to obtain more reliable results, variability
will now be measured directly by point-wise distance metrics. Prediction diversity
measures the extent of inter-sample differences and, therefore, quantifies the diversity
of model predictions. Bayesian models, which also account for epistemic uncertainty,
exhibit the highest prediction diversity. In contrast, both the baseline and advanced
models demonstrate lower diversity, as they contain only a few parameters. Consequently,
a large amount of training data is available for these parameters, reducing epistemic
uncertainty. However, as shown in Table 4.12, the advanced models contain parameters
estimated from only a few data points, leading to higher epistemic uncertainty and,
therefore, greater prediction diversity. In general, DistBoost models also perform well on
this metric. The most notable result is that ensemble models exhibit very low prediction
diversity, which could be attributed to the fact that they are not truly stochastic models.

Table 4.12: The inter sample distances across all samples.

Cityblock Euclidean
Model
Bayesian advanced-2 28.764 4.180
Bayesian advanced-3 28.233 3.933
DistBoost RMSE 20.798 0.727
Bayesian advanced-1 19.916 0.647
Bayesian baseline 17.305 0.168
DistBoost MAE 11.781 0.206
Ensemble RMSE 1.839 0.019
Ensemble MAE 0.608 0.008

4.2.3 Distributional Fit

The regression-based error metrics provide only an indicator of the model’s predictive
performance. However, they are not sufficient to fully understand the model’s ability to
capture probability distributions. Therefore, a detailed distributional analysis will be
conducted. The analysis will begin with an examination of the overall distribution and
will progressively refine by splitting the dataset along feature axes, such as the type or
the segment/ stop of the event. This approach aims to assess how well the model adapts
its distributional shape to different inputs.

Illustration of Delay Distributions

First, it will be demonstrated that the true empirical distributions differ depending on
the input. In Figure 4.3 one can see that the density plots of the true empirical delays
significantly differ between the event types. The same can be observed for delays between
different segments and stops in Figure 4.4. The models are expected to capture these

47



4. Results

very different shapes of distributions. This will first be evaluated by statistical measures
and later by visualizing examples.

Figure 4.3: Density Plot of the empirical true primary delays larger than zero. The
delays themselves as well as the counts where min max normalized. The chart does not
show the full tails of the distribution to increase readability. It serves as an illustration
that there are significant delay differences between different types of events.

Distributional Fit Statistics

To assess the fit between predicted values across different subsets, we use the KS-Statistic
and CVM Statistic. Table 4.13 presents the mean and best values for both statistics
across all samples in the full dataset.

Table 4.13: Distributional fit for the whole dataset.

Model KS-Statistic CVM-Statistic
Mean Best Mean Best

Bayesian baseline 0.013 0.010 6.338 2.845
DistBoost RMSE 0.010 0.009 4.689 3.177
Bayesian advanced-1 0.015 0.013 6.850 3.601
Bayesian advanced-2 0.016 0.014 6.316 3.814
Bayesian advanced-3 0.016 0.014 6.481 3.897
DistBoost MAE 0.015 0.015 5.582 4.851
Ensemble MAE 0.122 0.108 305.601 235.639
Ensemble RMSE 0.603 0.481 18061.629 12244.712

According to CVM statistics, the Bayesian baseline now provides the best overall fit,
followed by the RMSE-based DistBoost variant. In contrast, the ensemble models have
the worst overall fit.

For the KS metric, the baseline and the RMSE-based DistBoost model slightly outperform
the other variants. However, the differences are marginal, except when compared to the
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Figure 4.4: Density Plot for two illustrative choices of segments or stops to showcase the
difference between them.

ensemble model, which performs significantly worse. This result is particularly logical
for the Bayesian baseline, as it primarily fits the overall distribution, only distinguishing
between stops and passes. In general, Bayesian models always use pooled (shared)
parameters and therefore should perform well on this benchmark, though the posterior
distribution has a more robust shape in models with fewer parameters.

To validate these metrics, the distribution of all non-zero primary delays is shown in
Figure 4.5. As observed, the Bayesian primary delay distribution closely resembles the
True Delays distribution. Additionally, the ensemble models that performed the worst
according to the metrics also exhibit a poor visual fit.

Overall, models that explicitly or implicitly capture a distribution tend to achieve a
much better overall fit. However, RMSE appears to be the better loss function for the
parameterized distribution model, as it allows the model to predict larger mean and
sigma values.

To better understand how the shapes of predictive distributions adapt to the input
features, the dataset will be split along a specific axis. Reporting the mean and best

49



4. Results

Figure 4.5: Primary Delays overall distribution. The x-axis ticks as well as the bin size
are hidden to provide data anonymity.

values for each subset along the axis would result in a three-dimensional table, which
could be confusing. Therefore, for now, only the best value of the CVM statistics across
all samples for each subset will be presented. Table 4.14 shows the predictive distributions
fitted across the six main event differentiations used in the distributional analysis. For
each event, the best-performing model is always one of the DistBoost models. These
models clearly outperform the Bayesian models, which, in turn, significantly outperform
the ensemble models.

Similar results become apparent when splitting the dataset across its stops and segments.
Since displaying the best statistics for all 5,591 segments and stops is not feasible, the
summary statistics for all of them are presented in Table 4.15. Segments and stops with
less than 10 delay entries were removed to increase robustness of the statistic.

Lastly, a visual analysis will be conducted. A segment with larger-than-usual delays
was "cherry-picked" to illustratively visualize the model’s predictive distribution. The
predictive distributions for all models on this segment are plotted in Figure 4.6. As
expected from the distributional statistics analysis, the CatBoost ensemble models achieve
a low RMSE/MAE by underpredicting the target and only predicting low delays. In
contrast, the Bayesian models, in their simple form, are inflexible as they do not utilize
features such as the segment in this case. Nevertheless, they still provide a proper
modeling of large values. When the Bayesian models become more complex and utilize
input features, we observe that the peak of the distributions shifts in the right direction,
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Table 4.14: The dataset is split as for the distribution analysis by the type (first_stop,
stop, pass) and passenger boolean variable. For each model and subset the best CVM-
Statistic is calculated.

Run Stop First Stop
freight passenger freight passenger freight passenger

Model
DistBoost MAE 0.878 3.585 0.286 3.554 0.239 5.313
DistBoost RMSE 0.102 4.754 0.096 0.274 0.083 0.331
Bayesian advanced-2 1.331 7.586 6.376 29.48 26.26 96.236
Bayesian advanced-3 1.287 7.629 6.364 29.945 26.234 95.628
Bayesian advanced-1 0.941 8.405 5.997 23.007 25.779 83.94
Bayesian baseline 20.101 14.618 5.721 77.402 32.841 261.028
Ensemble MAE 53.158 88.457 7.834 150.235 41.494 76.504
Ensemble RMSE 3981.524 3995.441 400.043 3941.33 62.241 207.004

Table 4.15: The dataset is split by each segment or stop but every subset which has less
than ten delays is removed to increase reliability of the test. This results in 4890 splits.
As it is not possible to display the best CVM statistic for each subset summary statistics
across all subsets are presented.

mean 75% max
Model
DistBoost RMSE 0.037 0.019 19.795
DistBoost MAE 0.041 0.024 10.439
Bayesian advanced-2 0.119 0.036 14.813
Bayesian advanced-3 0.121 0.036 14.293
Bayesian advanced-1 0.461 0.338 31.515
Bayesian baseline 0.470 0.345 32.502
Ensemble MAE 0.861 0.913 54.176
Ensemble RMSE 4.095 5.581 122.755

although the predictions remain somewhat conservative. This could be due to the tight
priors on the segment and stop offset, which will be discussed later. Finally, the DistBoost
model, based on this one example, appears to have the best fit and adapts well to the
inputs.

4.2.4 Bayesian Model Comparison

So far, the models have been compared using error metrics and distributional fit. However,
Bayesian models allow for more advanced comparison methods by evaluating the expected
log predictive density (ELPD) which utilizes the posterior predictive distribution on new
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Figure 4.6: Kernel density estimate (KDE) plot for the true primary delay values and
for each model for all 300 samples. Data is only a subset representing a segment with
unusual large primary delays to illustrate the adaptability.

samples, rather than relying solely on pointwise errors. This approach takes the entire
predictive distribution into account when comparing to the true value, which is a superior
way to evaluate fit with stochastic models. This comparison is typically performed using
Leave-One-Out Cross-Validation (LOO) or the Widely Applicable Information Criterion
(WAIC). [VGG17]

In this thesis, LOO was used as an estimate of the out-of-sample predictive fit. LOO cross-
validation approximates the performance of the model on unseen data by systematically
leaving out one observation at a time and evaluating the model’s predictive accuracy on
that omitted point.

Cross-validation is also widely used in the machine learning (ML) domain, where it
involves repeatedly partitioning the dataset into training and validation (or holdout)
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sets. The model is trained on a subset of the data and then evaluated on the remaining
portion to assess its generalization performance.

In Table 4.16 the ELPD-LOO results for each submodel and variant are listed. Here
we can see that when evaluating the posterior predictive fit, the more complex models
outperform the simpler ones. This is in line with the distributional analysis, even though
this method is statistically more sophisticated.

Table 4.16: The expected log predictive density (ELPD) for the three submodels and 4
variants. As the overall values are quite high and visually hard to compare the difference
to the best results was calculated. Therefore zero presents the best result and every other
value the absolute difference.

ELPD diff zero ELPD diff run ELPD diff stop
Model
advanced-3 0.0 236.2 0.0
advanced-2 1310.5 0.0 125.6
advanced-1 13123.4 131972.6 84863.0
baseline 16319.3 133272.2 89417.7

4.3 Feature Importance
CatBoost, as an ML library, provides the capability to calculate feature importance.
This was done early in the study and was used in collaboration with domain experts
to select the input features for the Bayesian models, as using all features would result
in high computational complexity. Table 4.17 presents the feature importance for the
best-performing model in terms of distributional fit, the RMSE DistBoost model.

A majority of the model’s variability is explained by a few key input features, such as the
segment or stop, the category (which can be merged with passenger since it is a superset),
the type of event (stop, pass, first-stop) and, lastly, the hour of the day. Therefore, the
general practice of excluding some of the less important features for a more robust or
stochastically capable model is acceptable.

4.4 Model Performance Simulation Loop
For the train operators, mainly the positive additional delays are of interest. Due to the
small amount of positive secondary delays in Figure 4.7, the secondary delay distributions
averaged across all samples are plotted to get an understanding of the data distribution.
The first striking finding is that, even though, the positive delays are the main point of
interest, there is also a lot of information in the negative delays. Furthermore, no model
has as few positive secondary delays as when the true primary delays are injected.
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Table 4.17: Feature importance values from the DistBoost model trained with RMSE
loss.

mu sigma zero sum
Feature
segment_or_stop 29.37 19.55 51.56 100.47
category 18.92 16.50 17.75 53.18
type 10.24 8.06 7.78 26.08
operational_type 5.47 16.59 3.19 25.26
scheduled_arrival_hour 7.11 10.83 6.56 24.50
passenger 7.60 4.65 1.26 13.51
trainpart_speed 3.21 4.41 4.73 12.34
num_platform_edges 2.88 7.73 1.64 12.25
distance_geo 6.55 1.97 2.62 11.14
num_siding_tracks 2.51 7.10 0.95 10.55
v_max 3.08 1.76 1.52 6.36
is_first_stop 1.77 0.85 0.44 3.06
ocp_type 1.29 0.00 0.00 1.29

When looking at the fit of the overall distribution compared to the simulation experiment
with the true primary delays, the results in Table 4.18 are similar to the visual examination.
Leading in terms of KS and CVM-statistics are the DistBoost models followed by the
Bayesian models. The worst fitting models are the ensemble models. When comparing
pointwise predictions via MAE, the Ensemble RMSE model has the lowest error, closely
followed by the DistBoost models. Within the Bayesian family, only the baseline model
reaches an acceptable MAE.

Mean KS-Statistic Mean CVM-Statistic Mean MAE
Model
DistBoost RMSE 0.012 10.093 4.614
DistBoost MAE 0.022 12.245 4.724
Bayesian baseline 0.020 12.444 5.336
Bayesian advanced-3 0.022 23.301 13.785
Bayesian advanced-1 0.030 35.879 11.713
Bayesian advanced-2 0.035 67.402 18.484
Ensemble RMSE 0.097 541.788 4.080
Ensemble MAE 0.144 1282.217 6.807

Table 4.18: Mean Distributional fit and Error metric across all 300 simulated secondary
delays compared to the simulated secondary delays with the true primary delays injected.

When considering the total amount of injected delays, the ensemble MAE exhibited the
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Figure 4.7: Average histogram computed by first generating histograms for each simulated
secondary delay sample and then averaging the bin counts across all columns to capture
the overall distribution trend. Additionally, the histogram of the true primary delays
and zero delays is included for comparison.

lowest value, with a mean of only 13% of the total injected delays. However, it also had
the lowest MAE among all models. The simulation results indicate that, in interaction
with the simulation, this model performs worse in terms of MAE compared to models
such as DistBoost. This suggests that optimizing a model for an error metric like MAE
does not necessarily result in a low error or a good overall fit when compared to the true
simulated delays.

One might assume that Bayesian models, given their low MAE and strong performance in
statistical tests before simulation, would maintain these advantages afterward. However,
this is not the case. After simulation, the Bayesian models perform only moderately well
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on the distributional fit and exhibit the worst performance in terms of MAE. This leads
to the conclusion that, during theoretical performance evaluation, achieving a balance
between error metrics and fit tests is crucial.
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CHAPTER 5
Discussion

This chapter discusses the main findings from the results section in order to answers the
four research questions of this thesis. Additionally, new directions for future research,
identified through the detailed analysis of the results, are presented.

5.1 Best Fitting Distribution
Upon analyzing the PDIM models and their performance, an appropriate target distribu-
tion was identified. To determine the best-fitting distribution, multiple statistical tests
were conducted, including the Kolmogorov–Smirnov (KS) and Cramér–von Mises (CVM)
tests. While arguments exist both for and against each test, the analysis concluded
that using both in combination provides a more robust evaluation of the most suitable
distribution.

Testing the full dataset alone proved insufficient, as it was essential to assess the fit
while distinguishing between different event types. This distinction included passenger
versus freight traffic, as well as specific event types such as stops, first stops, and passes.
Although further segmentation - such as by time of day or track segment - could have
been considered, an initial division into six main event types offered a balanced trade-off
between complexity and model accuracy within the scope of this thesis.

The results demonstrated that models based on the best-performing distributions ef-
fectively captured the characteristics of the observed data. Based on these findings,
Research Question 1:

Which likelihood distribution best captures the statistical characteristics of
disaggregated primary delays in railway operations and which test is best to
evaluate the fit?
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can now be addressed. The analysis confirms that both the KS and CVM tests are
suitable evaluation methods and should ideally be used in conjunction. If a single
target distribution were to be selected, the log-normal distribution provides the best
overall fit. However, if multiple distributions are allowed for different event types, the
Pareto distribution is most appropriate for freight-related events, while the log-normal
distribution remains the best choice for passenger-related events.

5.2 Aleatoric vs Epistemic Uncertainty
The primary objective of this thesis was to develop multiple Primary Delay Injection
Models (PDIMs) and assess which is most suitable for integration into a large-scale
macroscopic simulation system. Various approaches, each with multiple subversions, were
evaluated. The Ensemble model, being the simplest approach, showed little promise,
as the CatBoost predictions generally exhibited low inter-sample diversity and a poor
distributional fit. These models had low error rates which is expected as this is exactly
what they optimized for and what ML-models generally excel at. However, as explained
in the Results section, pointwise error is not an appropriate metric for evaluating a
stochastic PDIM. Due to the randomness in the data and the loss functions used for
training, the target values were predominantly under-predicted.

Performance on the "is zero" task heavily depended on the chosen loss function, and it is
therefore recommended to explicitly model the "is zero" case. The Bayesian approach
offered two key advantages. First, even the simplest Bayesian models demonstrated
good overall performance, despite having only five parameters. Second, more complex
Bayesian models exhibited higher inter-sample diversity. However, some parameters had
limited data available for sampling, or the prior and model specification may have been
inadequate, occasionally leading to the generation of extremely large and unrealistic
delays. One potential solution would be to group certain categorical features that occur
infrequently into broader categories while preserving those that appear frequently. This
could help reduce epistemic uncertainty, which is the primary cause of outliers.

In general, the Bayesian framework is highly powerful, but careful consideration is
required at every stage (from model design and prior specification to feature engineering
and missing data imputation) to develop a well-performing model. Future research
could explore modeling freight and passenger delays with different distributions (e.g. log-
normal, Pareto) or using a mixture of both. However, small undocumented experiments
suggested that mixture models are slow to fit and require carefully crafted priors to avoid
divergences. Since not all possible approaches were explored, it is likely that Bayesian
models could perform better when incorporating these findings.

This leads to the DistBoost model family, which used a machine learning model to
parameterize two probability distributions: a Bernoulli distribution to model zero and
non-zero delays and a normal distribution, which - through logarithmic and exponential
transformations - represents a log-normal distribution. The DistBoost models performed
well in terms of both error and distributional fit and were easy and fast to train and
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interpret. A significant advantage is that, due to the optimization within the CatBoost
library, models trained on much larger datasets (100+ days) can be handled efficiently.
Additionally, the machine learning component can be easily replaced.

This leads to Research Question 2:

How do models which represent either aleatoric uncertainty, epistemic uncer-
tainty or those who represent both impact model performance?

The general conclusion is that incorporating aleatoric uncertainty leads to higher inter-
sample diversity, making the model statistically more capable. However, this is only
beneficial if the posterior distributions of the model parameters are not excessively wide,
which would otherwise result in extreme and unrealistic predictions. As demonstrated
in Figure 4.6, the model is capable of adapting to out-of-distribution segments. For the
models examined in this thesis, the disadvantages of aleatoric uncertainty outweighed
the benefits, especially when compared to a fast, powerful and easy-to-train model
that accounts for epistemic uncertainty but not aleatoric uncertainty. The Ensemble
model, which does not effectively incorporate either aleatoric or epistemic uncertainty,
demonstrated with its poor performance that epistemic uncertainty is a required property
in stochastic delay modeling. While the comparison between DistBoost and the Ensemble
models showed that aleatoric uncertainty, even though theoretically desired, is not
necessary to build a PDIM.

5.3 Adaptability
One of the main objectives in selecting and developing the PDIM was to ensure adapt-
ability to new, unseen data, including potentially new input features such as additional
stops or train categories. From the outset, the models were designed to facilitate this
adaptability. Due to the limited dataset size, this capability was not explicitly evaluated.
However, the following section outlines approaches for enabling the models to adapt to
previously unseen data.

For the Bayesian models, adaptation to new data is relatively straightforward. In the
baseline model, no modifications are required, as the only inputs are the event type and
whether the train is a passenger or freight train. In the advanced model, each segment is
represented as an offset added to or subtracted from the overall mean for a given event.
Consequently, the parameter µ_segment for an unknown segment can be initialized to
normal distribution with mean zero and sigma the same as the prior. Due to the addition
with the shared mean, it is effectively defaulting to the overall mean until new data
becomes available. In the Bayesian case, true online learning - where parameters are
updated as new data arrives - would also be feasible. This allows Bayesian models to
easily adapt to new and unseen scenarios.

For the CatBoost-based model, adapting to new data is not as straightforward as with
Bayesian models. This challenge begins in the training and feature selection phase.
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Highly specific features, such as the train_number, rely on the assumption that the same
schedule is present during both the fitting and sampling phases. However, this assumption
does not hold for passenger traffic, which changes quarterly to yearly, or for freight traffic,
where unique trains often run only once. As a result, the train_number cannot be used
to access information about a new freight train. Therefore, only trains that reoccur over
a longer time period should have a label for train_number. All non-reoccurring trains
or those from an outdated schedule should be assigned a missing value label. For this
reason, the train_number was not utilized in the models of this thesis.

In contrast, features such as passenger, is_first_stop, or segment_or_stop are always
present. However, in rare cases, a new stop could be introduced. In such situations, the
corresponding data entry should not be marked as missing, since the CatBoost library
treats missing values as a separate distinct category, which could introduce bias if the
training dataset contained specific target distributions for missing values. Instead, the
new, previously unknown station should be mapped to an existing station with similar
properties determined by a domain expert. Another option would be to train a separate
fallback base model using only features that almost never change, which could be utilized
when new stations are introduced. Nonetheless, even if the label was simply replaced
by a missing value, CatBoost still has many other features to rely on for predictions.
Therefore, if such cases occur infrequently, this approach could be acceptable.

All of these considerations are only necessary until the model is retrained on the updated
data, which is fortunately a fast process for DistBoost models. One benefit of the
CatBoost model architecture is that it utilizes a prior, such as the average target value,
when no information is available for a particular feature, as previously discussed.

Therefore, regarding Research Question 3:

How can the stochastic delay model be extended to generalize for predicting
primary delays in novel railway scenarios (e.g., new trains, routes, altered
timetables)?

It can be concluded that the Bayesian model can adapt to new data without modifying the
training process, simply by introducing new prior distributions for previously unknown
features. In contrast, ML-based models require careful consideration during both training
and prediction to account for the potential impact of unknown elements on the predictions.

5.4 Simulation Loop Validation
The simulation validation demonstrated that, while the primary focus is on positive
secondary delays, considering the full distribution - including negative delays - is essential.
Negative additional delays influence subsequent simulation steps, impacting the overall
system behavior.
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Since primary delays dominate the combined system, the simulation-based evaluation
played a less critical role than initially expected. A key finding was that models balancing
theoretical performance - achieving both low error and high distributional fit - also
exhibited lower errors in simulated secondary delays.

Thus, for Research Question 4:

How can the stochastic primary delay model, in conjunction with the simula-
tion loop, be validated by evaluating its ability to reproduce observed total
delays?

In conclusion, both positive and negative secondary delays must be taken into account, as
they collectively influence the total delays within the system. Additionally, the primary
delays themselves play a crucial role in shaping the final delay distribution. The results
also indicate that injecting the true primary delays leads to lower errors compared to
evaluating models in isolation. Therefore, validation should not rely solely on pointwise
error metrics such as MAE, but should also consider the overall distributional fit to
provide a more comprehensive assessment of model performance.

5.4.1 A Note on Extreme Values in Stochastic Simulation
In the context of railway primary-delay modeling for simulation systems, an important
question to explore is how extreme delay values should be sampled to ensure a com-
prehensive exploration of the probability space within a limited number of simulation
experiments. Consider a simple example with a single track segment where only 10 trains
pass on a given day. Additionally, assume that the delay distribution is not agnostic
to any specific features. For instance, the probability of observing a delay greater than
100 seconds is 0.01. In this case, simulating 100 experiments would result in drawing
a delay greater than 100 seconds roughly once per 10 simulations. This approach effec-
tively facilitates the exploration of extreme delay events, with one such event potentially
representing a large delay in each simulation.

However, the situation changes when extending this scenario to multiple segments or
when delays occur consecutively. In this case, rare, large delays might not be captured
within the 100 simulations. For example, if the delay threshold is increased to 600 seconds
(10 minutes), and the probability of such an extreme delay is 0.0001, it becomes unlikely
that any of the 100 simulations would include a delay of that magnitude. Consequently,
the model might fail to capture such rare, high-impact events.

This leads to the question of whether the model should focus primarily on more frequent,
realistic delays that are likely to occur more often and are less extreme. If a schedule
can accommodate these smaller delays without causing significant disruption, a large
delay occurring at a random point in time might not lead to a major issue, if the track’s
capacity is not overloaded. However, if a track is typically operating near full capacity,
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even a single additional train with a large delay could severely impact the system’s
performance, potentially causing cascading delays.

The key decision here is whether to prioritize modeling these rare extreme delays in the
simulation or focus on the more common delays, and whether it is acceptable to exclude
certain rare delays to maintain computational efficiency. The overall goal is to design a
scheduling system that avoids congestion and ensures that the system remains robust,
even in scenarios where multiple delays may occur. If the track segment is not frequently
used to capacity, it might be acceptable to allow a large delay to occur, as long as the
system’s capacity is not exceeded. However, if the track segment is often operating near
full capacity, even small delays could lead to significant disruptions, making it critical to
consider both frequent and rare delays in the model.
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CHAPTER 6
Conclusion

The modeling of primary delays in railway systems is a well-established research area,
having been studied for decades. The advent of simulation systems - whether macroscopic
or microscopic - has provided train operators with the ability to test schedules in isolated
environments. As computational power has grown, the ability to run numerous simulation
experiments within short time frames has become increasingly feasible. However, these
isolated environments fail to capture the complexities and issues that arise in real-world
operations. This is where stochastic input modeling plays a critical role: by introducing
realistic errors, such as delays, into the system, we can evaluate how the system responds
to these uncertainties.

With the ongoing digitalization of railway networks and traffic management systems, an
increasing amount of data is becoming available each year. This thesis serves as an initial
investigation into different modeling approaches for primary delays, their benefits and
their limitations. The data available for this study significantly influenced the choice of
models. The goal was to model the predictive distribution of primary delays for a given
train on a specific segment or stop. Future research could use a broader set of features
(if available) or incorporate live data feeds. However, in the context of train operators,
having a model that can reliably sample delays from limited information is particularly
valuable, given that the digitalization of a full railway network is a long-term process.

Ensemble models, while initially seeming to be a straightforward solution for primary
delay modeling, proved inadequate in reliably capturing the stochastic nature of delays.
These models lacked a truly stochastic component and, as a result, they were unable to
simulate the randomness inherent in delay patterns. Nevertheless, they provided valuable
insights into the best evaluation methods for PDIMs and their shortcomings highlighted
the need for more advanced modeling approaches.

The DistBoost models, which parameterized the log-normal and Bernoulli distributions
using the machine learning model CatBoost, showed significant promise. These models
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effectively captured the stochastic processes involved in delay modeling and demonstrated
excellent performance in both training and prediction. With larger datasets - potentially
including weather, passenger information, and other variables - fitting a state-of-the-art
model like CatBoost becomes relatively straightforward and computationally efficient.
However, a key limitation of the DistBoost model is its inability to account for epistemic
uncertainty, which is particularly important when working with limited data, as was the
case in this thesis. This limitation makes it challenging to model the uncertainties that
arise from sparse or incomplete datasets.

In contrast, Bayesian models excel at modeling epistemic uncertainty and are inherently
more explainable. They allow for the integration of expert priors and can be tailored
with custom architectures in collaboration with domain experts. However, these models
are challenging to build and are sensitive to bad priors and tuning. Furthermore, the
sampling process can be slow compared to machine learning-based models like DistBoost.
As the amount of data and number of features grows, these challenges become more
pronounced. Despite these issues, Bayesian models can still offer good performance with
relatively few parameters and are particularly useful for understanding outliers, although
more complex models sometimes struggle in this area.

In addition to theoretical performance, the interaction between the PDIMs and the
simulation system was validated. While primary delays are the primary contributors
to total delays, changes in validation metrics after simulation revealed that the overall
system behavior is also influenced by secondary delays. The results indicated that while
primary delays were central to the overall delay distribution, a comprehensive evaluation
of both positive and negative delays was necessary for an accurate simulation-based
validation.
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APPENDIX A
Bayesian Models

Due to the large visualization size the advanced-2 Bayesian model is only shown in the
appendix:
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A. Bayesian Models

(a) Zero Model

(b) Stop Model

(c) Run Model

Figure A.1: Advanced-2 models structure.
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APPENDIX B
Model Training

B.1 Larger Gridsearch Ensemble Model
The results of the full grid search on the CatBoost-Ensemble with only 10 models per
ensemble due to the large search space are presented in the table below (B.1). The dataset
is sorted by the mean MAE. The "Value" column indicates either the subsample or the
bagging temperature, depending on the mode. As shown in the table, the Bootstrap
mode has minimal effect on the variability.
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B. Model Training

MAE
mean span

Loss Subsample Mode Value
RMSE 0.3 Bayesian 0.0 18.28 1.71

Bernoulli 1.0 18.28 1.71
0.7 18.10 1.62

Bayesian 1.0 18.01 1.38
Bernoulli 0.3 18.04 0.91
Bayesian 10.0 18.09 0.83

0.7 Bernoulli 0.3 17.80 0.82
Bayesian 1.0 17.75 0.74
Bernoulli 0.7 17.80 0.72

1.0 Bernoulli 0.7 17.58 0.71
Bayesian 0.0 17.64 0.71
Bernoulli 1.0 17.64 0.71
Bayesian 1.0 17.53 0.66

0.7 Bernoulli 1.0 17.82 0.56
Bayesian 0.0 17.82 0.56

1.0 Bernoulli 0.3 17.62 0.46
0.7 Bayesian 10.0 17.98 0.42
1.0 Bayesian 10.0 17.84 0.24

MAE 1.0 Bernoulli 1.0 13.58 0.17
Bayesian 0.0 13.58 0.17

0.3 Bayesian 1.0 13.69 0.16
0.7 Bernoulli 1.0 13.65 0.15

Bayesian 0.0 13.65 0.15
1.0 Bernoulli 0.7 13.56 0.15
0.7 Bernoulli 0.7 13.61 0.13
0.3 Bernoulli 0.7 13.70 0.13
0.7 Bayesian 1.0 13.60 0.12
1.0 Bayesian 1.0 13.58 0.12
0.3 Bernoulli 1.0 13.72 0.11

Bayesian 0.0 13.72 0.11
0.7 Bernoulli 0.3 13.57 0.08
0.3 Bernoulli 0.3 13.67 0.07
1.0 Bayesian 10.0 13.74 0.07

Bernoulli 0.3 13.53 0.05
0.3 Bayesian 10.0 13.83 0.04
0.7 Bayesian 10.0 13.76 0.04

Table B.1: Large gridsearch for catboost ensemble model.
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Overview of Generative AI Tools
Used

Generative AI was utilized in multiple ways throughout the research and writing of
this thesis. The primary technology used was OpenAI’s GPT-4o model, accessed via
the interactive ChatGPT interface. Additionally, GitHub Copilot was employed during
coding to assist with completing lines of code and generating boilerplate from comments.

ChatGPT played several roles in the writing process. First, interacting with the model
helped me grasp new concepts and explore potential research directions. However, it was
only used as a preliminary tool to guide my understanding and was never cited as an
information source.

Second, ChatGPT served as a writing assistant, helping to improve sentence structure,
particularly in cases of long or complex sentences. To maintain consistency and ensure that
the model focused solely on structure and grammar without introducing new information,
I used the following predefined prompt:

You’re my writing coach. Improve grammar and clarity in this section of my
railway modeling thesis. Please do not add new information, just make the
structure clear and easy to understand. Retain LaTeX citations and remove
generic "we" formulations:

All AI-generated content was carefully reviewed and revised, as the model sometimes
introduced unintended modifications or misinterpreted the original meaning.

Lastly, ChatGPT was used to generate boilerplate code, such as utility functions and
visualizations. However, the main model and data import code were entirely written by
the author.
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