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Kurzfassung

Convolutional Neural Networks (CNN) erzielen gute Ergebnisse bei der Klassifizierung
von Musikgenres, sind aber nicht ohne weiteres interpretierbar. Diese Masterarbeit stellt
einen Erklärungsansatz vor, der die Semantik beschreibende Musik Eigenschaften als
Rechtfertigung für eine Genreklassifizierung liefert, sowie einen Ansatz, um das introspek-
tive Verständnis eines CNN Musikgenre-Klassifikationsmodells zu verbessern, indem die
von den Faltungsschichten erzeugten Feature-Maps zu jenen Musik Eigenschaften zuge-
wiesen werden, welche sie am besten abbilden. Für den Rechtfertigungsansatz wird eine
systematische Literaturrecherche durchgeführt, um ein geeignetes Modell zur Vorhersage
von Musik Eigenschaften auswählen zu können. Wir fanden heraus, dass semantische
Musik Eigenschaften aus Audio-Datein erlernt werden können, allerdings reicht die Anzahl
der vorhergesagten Eigenschaften nicht aus, um eine Genreklassifizierung rechtfertigen zu
können. Außerdem haben wir festgestellt, dass die Erklärungen in Form von semantischen
Eigenschaften, die von dem vorgeschlagenen Erklärungssystem geliefert werden, für das
Ground-Truth Genre relevant sind. Darüber hinaus stellen wir eine Möglichkeit vor, die
bereitgestellten Eigenschaften im Modell-Input zu visualisieren. Für den zweiten Ansatz
testen wir k-Nearest Neighbour und Random Forest, um semantische Eigenschaften auf
Feature-Maps abzubilden. Wir bieten auch eine Visualisierung der Feature-Maps welche
die semantischen Eigenschaften von zwei Beispiel Liedern am besten darstellen. Weiters
wird gezeigt, wie sich Feature-Maps von unterschiedlichen Schichten unterscheiden, und
bewertet, welche und wie gut die semantischen Eigenschaften von den jeweiligen Feature-
Maps abgebildet werden können. Wir waren jedoch nicht in der Lage, Feature-Maps zu
finden, die alleine eine semantische Eigenschaft vollständig abbilden kann.
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Abstract

Convolutional Neural Networks (CNN) achieve a good performance in music genre classi-
fication but are not readily interpretable. This master thesis proposes an explanation
approach that provides semantic descriptors as a justification for a music genre classifica-
tion as well as an approach to gain introspective understanding of a CNN music genre
classification model, by assigning appropriate semantic descriptors to feature maps, gen-
erated by the convolutional layers. For the justification approach a systematic literature
review is conducted to find a suitable model to predict semantic descriptors. We found
that semantic descriptors can be learned from audio inputs as used for state-of-the-art
CNN genre classification models, however the number of predicted tags is not enough
to justify a genre classification. Additionally, we found that the explanations in form of
semantic descriptors provided by the proposed explanation system are indeed relevant
to the ground truth genre. Furthermore, we present a way to visualize the provided
descriptors in the input. For the introspective approach, we consider k-Nearest Neigh-
bour and Random Forest to map descriptive labels to feature maps. We also provide a
visualization of the feature maps that represents the semantic descriptors best for two
example songs. We show how feature maps differ from different layers and assess how
well a feature map covers the semantic of a descriptor. However, we were not able to
find feature maps that alone can fully represent a semantic descriptor.
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CHAPTER 1
Introduction

1.1 Motivation
Black-box models are used in more and more applications in a variety of fields, therefore
explainability of such machine learning models is steadily gaining importance. This
becomes even more important in fields where decisions can lead to serious consequences
for certain people, like medical diagnosis, financial decision making and self-driving cars.
Therefore, these models require deeper understanding not only for improving safeness by
retracing wrong decisions, but also for legal reasons [ZGCH21].

By explaining decisions of black-box models, to which class most of the state-of-the-art
music genre classification models belong, one can differentiate between introspection
explanations, whose aim is to expound on which model specific setting the final output
was determined, and justification explanations, which relate the final output of the model
to separately learned tangible features to validate a decision [HAR+16].
Deep Neural Networks (DNN) show high effectiveness in music genre classification
[CKN+19, JHP22, LA22, GSS20], however, their performance comes at the cost of miss-
ing interpretability of their predictions. This is one of the main problems research is
currently facing [HAR+16]. Providing explanations for the decisions of Deep Neural
Networks with visual evidence (or audible evidence in the case of audio classification)
leads to more trustworthy systems [HAR+16]. This can be even further enhanced by
grounding the generated explanations within the input [HHDA18]. Furthermore, develop-
ing an explanation system and providing explanations based on descriptive labels, such
as occurring instruments or semantic descriptions of timbre and mood, would be more
suitable for music experts who usually do not have experience with artificial intelligence
(AI) models to work with an introspection explanation system.
To measure how accurate the generated explanations describe the genre, a clear defini-
tion is needed and therefore a mapping between semantic descriptors, provided by the
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1. Introduction

explanation systems, and genres is needed.

1.2 Aim of the Work
The aim of this work is the development of an explanation system for state-of-the-art Deep
Neural Networks for genre classification. The system should provide descriptive labels for
songs whose genre was predicted by a state-of-the-art model. In order to understand the
semantic descriptors as an explanation of the genre classification, the descriptors should
reflect properties of the given audio instance and also fit the predicted genre [HAR+16].
In the course of this work, we investigate if state-of-the-art models are able to learn music
characteristics from audio files and if they can be used as explanation for a specific genre
decision. For this purpose, a systematic literature review was conducted to determine
appropriate models.

This thesis is restricted to explaining Convolutional Neural Network (CNN) genre clas-
sification models using images representing mel-spectrograms as input, as we want to
explore the visualization of semantic descriptors in the input. Additionally CNNs are of-
ten represented in the state-of-the-art of genre classification.[CKN+19, GSS20, SPM+22]
Furthermore, the second part of this thesis aims to investigate the extent to which
semantic descriptors can be assigned to feature maps generated by the convolutional
layers of CNN-based genre classification models. This approach aims to reveal which
feature maps cover which semantic information and thus can enhance the introspective
understanding of a model.

Research question 1: To what extent can semantic descriptors be learned from audio
inputs as used for a state-of-the art CNN genre classification model?

For the evaluation of research question 1, it is needed to train the state-of-the-art
models, selected based on a systematic literature review, for spectrograms as input and
semantic descriptors as output. Learning descriptive labels is a multi-labelling problem.
Therefore, frequently used multi-label performance metrics, namely ROC-AUC, micro-
/macro-averaged precision and recall, are used for evaluation.

Research question 2 focuses on the examination on how accurately the explanations fit
the given genre, intended to assess if predicted descriptors can serve as an explanation
for a genre classification.

Research question 2: To what extent are the explanations in form of semantic descrip-
tors, provided by the explanation system, relevant to the ground truth genre?

For the evaluation, a mapping between semantic descriptors and genres is needed to show
the relevance of the predicted explanations to the given genre. Thus, an appropriate
classification model needs to be selected, trained on a training set consisting of the
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1.3. Thesis Structure

descriptive labels as input and the genre as outcome, and evaluated on a test set.

Research question 3: To what extent can semantic descriptors be assigned to feature
maps of a state-of-the-art CNN genre classification model?

Research Question 3 aims to determine which semantic descriptors are best repre-
sented by which feature map of a CNN genre classification model. To assign semantic
descriptors to feature maps, we train models for feature maps as input and descriptors
as outcome. In this step we assume that the feature map for which predicting a semantic
descriptor achieves the best performance, also contains semantic information that covers
the semantic descriptor best.

1.3 Thesis Structure
The explanation system approach for state of the art genre classification models, the
approach to assign semantic descriptors to feature maps generated by the convolutional
layers of such models, as well as the dataset we use are introduced in Chapter 2. In Chapter
3 we determine and describe the state of the art genre classification model for which we
apply the proposed approaches. A systematic literature review is contacted in Chapter 4
to provide an overview of the state of the art in learning semantic descriptors. The model
performing best for learning descriptors for our explanation system is determined, its
predictions are visualized, and the whole workflow of the explanation system is described
in Chapter 5. In Chapter 6 we apply the second proposed approach, assigning semantic
descriptors to feature maps, on the dataset selected in Chapter 2. Finally, we draw the
conclusions of our work with respect to our research question and provide an outlook for
future work in Chapter 7.

1.4 Related Work
Already in the beginning of artificial intelligence (AI), researchers have recognized that
intelligent systems should explain their results [XUD+19]. Therefore, explainability is
not a new topic and articles were published more than 40 years ago already covering the
topic of explainability [SCDS77, Swa81]. Just as rule-based expert systems, with rules
defined by human experts, can explain the reason for a negative or positive decision, so
can a decision tree and is therefore a good example for an explainable structure of AI
[XUD+19]. With the development of modern DNNs, however, the field of research for
explainable AI has been revisited, since modern DNNs are not natively explainable by
either the network itself or the developer of the network [XUD+19].

To explain decisions of deep learning models, that do not inherently have an explain-
able structure, we can distinguish between justification and introspective explanations.
Justifications provide information, based on which the user can evaluate whether the
decision was a good one or not [BC17]. However, justifications do not explain how
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1. Introduction

this decision was reached. On the contrary, introspective explanations aim to use the
network itself to explain how a decision was made [BC17]. An example for introspective
explanations is layer-wise relevance propagation (LRP) [MBL+19], which is a method to
gain transparency for the decision of a deep neural network, by propagating the output
relevance back through the network layers and assigning a relevance score to each input
variable [XUD+19].

1.5 Convolutional Neural Networks (CNN)
Convolutional Neural Networks are a class of deep learning algorithms which have become
very popular in recent years because of their performance in a variety of tasks such as
image classification, object recognition, and segmentation. The network has its name
from the fact that it uses a convolution, a mathematical function, to summarize local
patterns by scanning the input and generating feature maps based on the used filters.
[LBH15, GBC16, KSH17]

In the following, the core components of CNNs are briefly introduced and described.

1.5.1 Convolutional Layer

The main part of a Convolutional Neural Network is the convolutional layer, which
contains a set of filters. The filters are set with different weights and are used to convolve
the input by sliding over it and calculating the scalar-product between the elements of the
filter and the input [MW21]. This process results in a set of feature maps that capture
different aspects of the input image. Therefore the output of the convolutional layer is
three dimensional with the third dimension being the number of feature maps, called
channels. Usually, CNN consist of multiple convolutional layers, where each layer builds
on the features learned by the previous layer to produce a more abstract representation
of the input.[MW21] The number of filters, the size of the filter and the size of the
strides, the step size with which the filter scans the input, are essential parameters of a
convolutional layer. For the output of a convolution layer, usually a non-linear function
is used as activation function. The most commonly used function is the rectified linear
unit (ReLU), defined as f(x) = max(x, 0), where x is an element of the scalar-product
between filter and input [YNDT18].

1.5.2 Pooling Layer

The pooling layer intends to down sample the feature maps after a convolutional layer
and does not include any trainable parameters. The layer can be configured like a
convolutional layer by setting the filter size and the stride. The max-pooling layer is
the most commonly used and outputs the maximum value within the filter window and
discards all other values [YNDT18]. Global-averaged-pooling is a pooling layer where for
each feature map the average of all elements is calculated.
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1.6. Signal Processing

1.5.3 Fully Connected Layer
In the fully connected layer (or dense layer) each input neuron is connected to all output
neurons and is used to create the final output. To connect the fully connected layer to
the convolutional layers, typically a flatten layer, which resamples all feature maps to
a one dimensional array, or global-average-pooling is used [YNDT18]. The activation
function for the final output has to be set according to the task the network should fulfill.
For a multi-class classification, softmax activation is used, which normalizes the output
values so that the sum of all output values equals to one and thus the output values
represent the class probabilities [YNDT18]. For a probability distribution, needed for
binary classification and multi-label classification, a logistic sigmoid function is used as
activation function, as it maps the values to a range of zero to one [GBC16].

1.5.4 Dropout
Dropout is a mechanism to prevent overfitting in neural networks. In each training epoch,
a set of nodes is selected that should not be present in the training and their output is
set to zero [Iza22].

1.6 Signal Processing
To use an audio file as an input of a CNN, the audio signal has to be processed to an
multi-dimensional representation of the audio signal. The mel-spectrogram is one of
the most commonly used representations of audio sequences used as input for CNNs. It
divides the audio signal into frames using a window function and applies a fast fourier
transformation (FFT) to each window to transform the time domain into the frequency
domain, by providing the magnitudes of the spectral components. The magnitudes
are then grouped into bins according to the mel scale, which maps frequencies to the
approximate mel scale perceived by the human ear. An examples of a mel-spectrogram
is shown in Figure 3.1 in chapter 3.
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CHAPTER 2
Explanation Approaches

In this thesis we consider two different approaches to explain decisions of state-of-the-art
genre classification models. The first approach, the explanation system, justifies the
decisions by providing semantic descriptors. The second approach connects the feature
maps of the convolutional layers of the state-of-the-art genre classification models and
the semantic descriptors. In this chapter, these two proposed approaches are introduced.

2.1 Explanation System Approach with Semantic
Descriptors

The main goal of the explanation system approach with semantic descriptors is learning
music characteristics or semantic representations of music which should justify music
genre-classification decisions and gain trust in the model to be explained. To develop
such a explanation system, two main components are needed.

The first component is the training of a model to predict semantic descriptors, such
as occurring instruments, timbre and mood, which should explain, justify or at least,
give an indication for the genre decision of the model to be explained. Since a song has
several characteristics, this is a multi-labelling problem. To evaluate models for learning
semantic descriptors we use accuracy, micro-/macro-averaged precision and recall. To
evaluate the relevance of the learned descriptors to the predicted genre and therefore
to what extent the descriptors describe the genre-classification decision itself, we need
something capable of telling how much certain characteristics fit certain genres. Since
there does not exist a clear definition of what music characteristics a genre consists of, we
create a mapping between all semantic descriptions of songs and their respective music
genre. This mapping is the second component for the explanation system approach.
The mapping has to include a membership degree to show how relevant the predicted
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2. Explanation Approaches

Figure 2.1: Schematic description of the relationship between individual components of
the explanation system approach

explanation is to the given genre. An overview of the explanation system approach is
shown in Figure 2.1

In a further step, the found music properties are located in the spectrogram input of
the descriptor learning model with Deep Taylor Decomposition, a variant of layer-wise
relevance propagation [BBM+15], in order to improve the trustworthiness of explanation
systems [HHDA18].

2.2 Assigning Descriptive Labels to Feature Maps
generated by Convolutional Layers

Convolutional Neural Networks generate feature maps after each convolutional layer by
applying filters to an input. The feature maps of the first convolutional layer are the result
of applying one filter to the input spectrogram and extract low-level features [MW21].
The subsequent layers combine the features of the previous layer and thus extract more
and more detailed information. In the second part of this thesis we want to assign feature
maps to specific music characteristics. Therefore, we store the intermediate outcomes of
the model to be explained for a set of audio files and train a model for each single feature
map as input and music characteristics as output. We investigate possible differences in
performance for different layers as well as for different feature maps within one layer. For
this step, we consider Random Forest (RF), K-Nearest-Neighbour (k-NN) and Support
Vector Machines (SVM) as models for training and testing the music characteristics for
each feature map. It is to assume that we can obtain better performance for feature maps
and specific music characteristics if a feature map has abstracted semantic information
which is equivalent to a specific characteristic. This approach aims to determine which

8



2.2. Assigning Descriptive Labels to Feature Maps generated by Convolutional Layers

Figure 2.2: Overview of Assigning Descriptive Labels to Feature Maps Approach

feature maps represent which music characteristics best or worst and, unlike the first
approach, is not intended to explain individual music genres decisions but to facilitate a
better understanding of the model to be explained.
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2. Explanation Approaches

2.3 Datasets

In order to implement and evaluate the two proposed approaches, a dataset that contains
audio, for mel-spectrogram creation, genres and descriptive audio characteristics is needed.
In the following we present frequently used datasets in the area of music information
retrieval (MIR) research.

One can roughly divide such datasets into those created by annotating audio file with
the goal of assigning characteristics and those created by collecting information from
platforms that allow users to tag songs. The latter are therefore called social tags. This
type of data collection is less costly and results in much larger datasets, however, also
leads to much noisier data.

2.3.1 Annotated Semantic Information

CAL500

The Computer Audition Lab 500 (CAL500) dataset [TBTL08] contains 500 unique
songs annotated with 135 music relevant properties of six semantic categories: genre,
instruments, vocal characteristics, emotions, acoustic characteristics like tempo, energy
and sound quality, and usage terms like in what situation this music is suitable. To
annotate the audio files, 66 students were hired to listen to at least 30 seconds of each
song before annotating it with the given set of the vocabulary. The 135 annotated
music properties are mapped to 237 music tags by mapping all bipolar properties to two
individual tags. For example, the the characteristic Energy Level, which is tagged with
1 to 5, is mapped to Low Energy and High Energy. Afterwards the tags are reduced
to 174 characteristics that are represented by at least five songs. For each of the 500
songs the creators provide Mel-frequency cepstral coefficients (MFCCs) but no audio
files of the songs itself. MFCCs are audio representations like mel-spectrogram where
the calculation is based on furier transformation and discrete cosine transform. For the
CAL500, about 5,200 39-dimensional MFCCs are created per minute of audio content.
By randomly subsampling, they select 10,000 MFCCs per song to obtain equally sized
representation for each song.

CAL10K

The Computer Audition Lab 10K (CAL10K) dataset [TKT10] contains 10,870 songs
of 4,597 different artists annotated with 153 genres (18 genres and 135 sub-genres)
and 475 acoustic tags including instruments, vocal characteristics, emotions, acoustic
characteristics and usage terms like in the CAL500. The annotations were obtained
from Pandora’s Music Genome Project and include between two and 25 tags per song.
According to [TKT10], the tag selection and annotation were carried out by trained music
experts as part of Pandora’s Music Genome Project and can be considered acoustically
objective. Like in CAL500, MFCCs are provided as audio representations but no audio
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2.3. Datasets

files itself. For each song of CAL10K six 5-second snippets, evenly distributed throughout
the song, are selected and about 2,700 36-dimensional MFCCs are created.

MagnaTagATune

The MagnaTagATune dataset [LWM+09] consists of 25,863 audio files each with a length
of 29 seconds, annotated with 188 music characteristics in total including 37 genre related
tags and 151 other tags covering instruments, vocal characteristics, emotions and acoustic
characteristics like tempo and energy. The audio files are provided as Mp3 files. The
dataset was collected using the game TagATune [LVADC07], which is designed to gather
music labels for songs from users.

Free Music Archive - FMA

The Free Music Archive (FMA) [DBVB17] is another dataset frequently used in music
information retrieval and contains 106,574 audio tracks labeled with 161 genres. The
dataset also contains artist metadata, like name, member, location and active years, and
album metadata, like album title and release date. Furthermore the Echonest ID as
well as audio features provided by Echonest1 (now Spotify2) like a rate of acousticness,
danceability, energy and instrumentalness, and tempo in bpm are provided for the FMA
Dataset. Unfortunately, it does not contain any music characteristics other than genre
and is therefore not suitable for the purpose of this work.

2.3.2 Social Tags

MSD - LastFM

The Million Song Dataset (MSD) [BMEWL11] provides audio features and metadata
of a million popular music tracks. The team of MSD also collaborated with Last.fm
and collected song-level tags and song similarity for 943,347 tracks of the MSD with the
Last.fm API and created its own dataset, namely the Last.fm Dataset3. 505,216 tracks
are tagged with at least one of the 522,366 tags. The tags made available by the API were
created by users of Last.fm who can listen to music tracks and tag them independently,
which, did not lead exclusively to audio-descriptive tags. However, the 522,366 tags
covers music characteristics of the categories instruments, vocal characteristics, emotions,
acoustic characteristics, usage terms, decades, countries and languages but also many
user related tags like favorites, nostalgic and i like, and many incomprehensible tags like
aaa.
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2. Explanation Approaches

Table 2.1: Comparison of the data sets regarding properties relevant for the master thesis

Dataset Music Characteristics / Semantic
Descriptors

None-
Genre Tags

Genre
Tags

Audio
Files

Cal500 instruments, vocal characteristics,
emotions, acoustic characteristics,
usage terms

174 yes no

Cal10K instruments, vocal characteristics,
emotions, acoustic characteristics,
usage terms

475 yes no

MagnaTag-
ATune

instruments, vocal characteristics,
emotions, acoustic characteristics

151 yes yes

FMA - 0 yes yes

MSD - Last.fm instruments, vocal characteristics,
emotions, acoustic characteristics,
usage terms, decades, countries,
languages

> 500,000 yes yes

2.3.3 Selection
The properties of the presented datasets relevant to our proposed approaches are sum-
marized in Table 2.1. As Cal500 and Cal10K are not providing audio files and not even
a mel-spectrogram we can not consider them for our approaches. FMA offers audio
files but no music characteristics except for genres and is therefore also not suitable
for the implementation of our approaches. The MSD-Last.FM dataset contains all the
information we need, but is subject to a lot of cleanup due to the fact that it is a social tag
datset. Since MagnaTagATune also contains all the information we need and in addition
it is an annotated dataset, which in contrast to CAL500 and CAL10K, also includes
the audio files, we choose it to apply and evaluate our proposed approaches, where the
contained property serves us as a semantic descriptor. Moreover, the MagnaTagATune
dataset is used for all models we consider for the explanation system in their original
papers, determined by the semantic literature research presented in chapter 4.

1https://web.archive.org/web/20170519050040/http://the.echonest.com/
2https://open.spotify.com/
3http://millionsongdataset.com/lastfm/
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CHAPTER 3
Model to be Explained

Since the goal of this thesis is to generate explanations and examine feature maps of
CNN based music genre classification models, the first step is to specify a model to be
explained on which we can apply and validate our explanation approaches.

Using Convolutional Neural Networks is a common way to perform music genre classifi-
cation tasks on spectrograms and achieve good performance across the board [CKN+19,
GSS20, SPM+22]. We implement the CNNs introduced in [CKN+19] and [PG20] which
are reported as well-performing and also clearly describe the architectures as well as the
implementation details of the networks, and select the better performing one as model
to be explained. We pre-process the MagnaTagAtune dataset to obtain a dataset that
can be used for training the genre classification models. Due to the nature of Deep
Neural Networks, a large number of training data is needed to obtain a stable model.
Thus, we implement the networks for an input of 128x128x1 like in [PG20] and cut the
mel-spectrogram we obtain from a full audio file into appropriately sized parts in order
to generate more training data.

3.1 Data Pre-processing
In the used dataset MagnaTagATune are 12 genre annotations within the top 50 an-
notations, namely, classical, techno, electronic, rock, indian, opera, pop, classic, new
age, dance, country and metal. As the genres classic, classical and opera as well as
techno, electronic and dance are often annotated together we combined them to the
genres classical and electronic which finally leads to eight genres. After combining the
genres we obtain 12,310 audio files annotated with a single genre and 13,550 annotated
with multiple genres. The mel-spectrograms are created from the mp3 files using the
open source Python library Librosa. We used the original sampling rate of the mp3
files of 16 kHz, a window size of 1024, a hop length of 512 and 128 mel bands. As the
mel-spectrogram creation leads to a mel-spectrogram of the size 128x911, we can cut
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3. Model to be Explained

Figure 3.1: Example of a 128x128 Mel-Spectrogram for the song ’Howl at the Moon’
from Seismic Anamoly

13 mel-spectrograms for each audio file when using a hop size of 64. A representative
example of such a mel-spectrogram is shown in Figure 3.1 for the song ’Howl at the
Moon’ from Seismic Anamoly which is labeled with the genre rock.

Of all audio files, which are only tagged with one genre, 295 are annotated with the genre
country, as compared to 5,048 annotations with classical and 3,254 with electronic. After
preserving 2,000 audio files for later testing purposes, only 242 are left annotated with
country. Thus, we train the models once with fully balanced data where each genre is
limited to 242 audio files, resulting in 3,146 mel-spectrograms each and once with data
where each genre is limited to a maximum of 1,000 audio files to increase the number of
training data and to determine whether it has an impact on the performance. On the
one hand we can expect better performance for the semi-balanced data since we create
more training data, but on the other hand Pelchat and Gelowitz [PG20] has observed the
opposite. A listing of the precise number of calculated mel-spectrograms for each genre is
shown in Table 3.1. The audio files are randomly split into training set (80%) and test set
(20%) and only afterwards the mel-spectrograms are created, to avoid mel-spectrograms
from the same audio file being present in both training and test set.

3.2 CNN Architecture following [CKN+19]

In this section we describe the architecture of the music genre classification model
introduced in [CKN+19].
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3.3. CNN Architecture following [PG20]

Table 3.1: Number of created Mel-Spectrograms for each Genre for Balanced and Semi-
Balanced Data

No. Genre Name Balanced Semi-Balanced
1 Rock 3,146 13,000
2 Indian 3,146 13,000
3 Pop 3,146 5,070
4 New Age 3,146 3,679
5 Country 3,146 3,146
6 Metal 3,146 5,902
7 Electronic 3,146 13,000
8 Classic 3,146 13,000

Total 25,168 69,797

3.2.1 Convolutional Layers

The model consists of three convolutional blocks, composed of a convolutional layer,
followed by a batch normalization and a max-pooling layer. For the convolutional layers,
64, 128 and 256 filters are used, each with a filter size of 3x3 and a step size of one.
Rectifier Linear Unit (ReLU) are used as activation function. For the max-pooling layer,
a pool size and strides of two are selected which leads to a halving of the resulting
dimensions of each convolutional layer.

3.2.2 Fully Connected Layers

Subsequent to the three convolutional layers, a fully connected layer with 512 units and a
subsequent dropout of 20% to prevent overfitting are used. To convert the output of the
convolutional layers to one dimension, a flatten layer is used. Finally, there is a softmax
layer to determine the probability of membership to each genre.

3.3 CNN Architecture following [PG20]

In this section we describe the architecture of the music genre classification model
introduced in [PG20].

3.3.1 Convolutional Layers

This model contains six convolutional layers which are each followed by a max-pooling
layer. The convolutional layers have a filter size of 2x2, step size of one, and use 64, 128,
256, 512, 1024 and 2048 as number of filters and Rectifier Linear Unit (ReLU) as the
activation function. For the max-pooling layer, a pool size and strides of two are selected.
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3. Model to be Explained

Table 3.2: Layer listing of Genre Classification Model following [CKN+19]

Layer Output Shape Param #
Input Layer (128, 128, 1) 0
Convolutional Layer (3x3) (128, 128, 64) 640
Batch Normalization (128, 128, 64) 256
MaxPooling2D (2x2) (64, 64, 64) 0
Convolutional Layer (3x3) (64, 64, 128) 73,856
Batch Normalization (64, 64, 128) 512
MaxPooling2D (2x2) (32, 32, 128) 0
Convolutional Layer (3x3) (32, 32, 256) 295,168
Batch Normalization (32, 32, 256) 1,024
MaxPooling2D (2x2) (16, 16, 256) 0
Flatten (65536) 0
Dense (512) 33,554,944
Dropout (0.2) (512) 0
Dense (Softmax) (8) 4,104
Total params: 33,930,504
Trainable params: 33,929,608
Non-trainable params: 896

3.3.2 Fully Connected Layers

The output of the convolutional layers is converted to one dimension by a flatten layer
and is than passed to a fully connected layer with 4096 units with a subsequent dropout
of 50%. The last layer is a softmax layer to determine the probability of membership to
each genre.

3.4 Implementation Details

Both CNNs are implemented in Python using Keras from TensorFlow. The models are
trained with a batch size of 64, 50 epochs and a validation split of 20%. Categorical
cross-entropy is used as loss function and ADAM with the default learning rate of 0.001
as optimizer.
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3.5. Result

Table 3.3: Layer listing of Genre Classification Model following [PG20]

Layer Output Shape Param #
Input Layer (128, 128, 1) 0
Convolutional Layer (2x2) (128, 128, 64) 320
MaxPooling2D (2x2) (64, 64, 64) 0
Convolutional Layer (2x2) (64, 64, 128) 32,896
MaxPooling2D (2x2) (32, 32, 128) 0
Convolutional Layer (2x2) (32, 32, 256) 131,328
MaxPooling2D (2x2) (16, 16, 256) 0
Convolutional Layer (2x2) (16, 16, 512) 2,098,176
MaxPooling2D (2x2) (8, 8, 64) 0
Convolutional Layer (2x2) (8, 8, 1024) 8,390,656
MaxPooling2D (2x2) (4, 4, 1024) 0
Convolutional Layer (2x2) (4, 4, 2048) 33,558,528
MaxPooling2D (2x2) (2, 2, 2048) 0
Flatten (8,192) 0
Dense (4,096) 33,558,528
Dropout (0.5) (4,096) 0
Dense (Softmax) (8) 32,776
Total params: 44,769,480
Trainable params: 44,769,480
Non-trainable params: 0

3.5 Result

For training the models with balanced data, we achieve an accuracy of 68.6% for the
model following [CKN+19] and an accuracy of 63.1% for the model following [PG20], for
the semi-balanced data we observe an accuracy of 77.1% and 75.5%, respectively. We
observe that the validation loss fluctuates significantly after only a few epochs. Therefore,
we introduce Keras’ callback methods ModelCheckpoint and LearningRateScheduler.
ModelCheckpoint saves the model weights at some frequency, to load the best weights
after the training process. In our case, we save the weights for the best value of accuracy.
The customizable LearningRateScheduler callback method is called before each epoch,
gets the current epoch and learning rate as argument and returns the learning rate. We
define the LearningRateScheduler to keep the initial learning rate for the first 10 epochs
and decreases it exponentially after that. After applying these callback methods, the
fluctuation of the validation loss is reduced (see Figure 3.2) and the accuracy of the
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3. Model to be Explained

(a) without Keras’ callbacks (b) with Keras’ callbacks

Figure 3.2: Validation loss fluctuation for CNN following [CKN+19] with and without
using Keras’ callback methods.

Table 3.4: Music Genre Classification CNNs - Performance

Model Data Accuracy Precision Recall ROC-AUC
CNN
[CKN+19]

balanced Data 77.3% 77.9% 77.3% 95.2%

CNN
[CKN+19]

semi-balanced
Data

79.8% 76.4% 72.1% 95.9%

CNN
[PG20]

balanced Data 76.6% 77.0% 76.7% 94.8%

CNN
[PG20]

semi-balanced
Data

78.9% 74.7% 71.3% 95.3%

models improved. The models that are trained on semi-balanced data still outperforms
the models trained on balanced data but the differences in performance is lower than
before the callback methods were applied. For the CNN following [CKN+19], the accuracy
for balanced data could be improved to 77.3% and the accuracy for semi-balanced data
could be improved to 79.8%. For the CNN following [PG20], the accuracy for balanced
data could be improved to 76.6% and the accuracy for semi-balanced data could be
improved to 78.9%. The macro-averaged performances of the models after applying the
callback methods are provided in Table 3.4. The original paper [CKN+19] could obtain
an accuracy of 88.5% and the original paper [PG20] an accuracy of 85%, but are both
trained on different datasets than the MagnaTagATune dataset.

The CNN following [CKN+19] trained on semi-balanced data achieves the best perfor-
mance and is therefore selected as the model to be explained. Furthermore an overview
of the selected model is shown in Figure 3.3.
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3.5. Result

Figure 3.3: Architecture of the selected CNN Genre Classification Model to be Explained
(created with the online-tool NN-SVG [LeN19])
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CHAPTER 4
Learning Semantic Descriptors -

Systematic Literature Review

In this section the results of a systematic literature review according to Kitchenham
(2004) "Procedures for Performing Systematic Reviews" about learning descriptive labels
from music files are presented. The aim of this systematic literature review is to provide
an overview on state-of-the-art models in this field to be able to select a model for the
explanation system approach introduced in this thesis.

4.1 Review Protocol

4.1.1 Rationale
This master thesis aims to learn explanatory labels from audio instances to use them
as an explanation for predictions of black box models for genre classification. Since
the development of an own model would be beyond the scope of the master thesis, a
systematic literature review is carried out in order to be able to select a state-of-the-art
model for the purpose of learning semantic descriptors.

4.1.2 Review Question
To what extent can descriptive labels be learned from music files?

The target audience are the user of the explanation system developed in the course
of this master thesis. The subject matter is models for learning explanatory labels
from audio files and the comparison of the models will be based on ROC-AUC. Predict
descriptive labels for a song is a multi-label problem for which different approaches exists.
The outcome is the performance and the approach used to solve the multi-label problem.
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4. Learning Semantic Descriptors - Systematic Literature Review

4.1.3 Search Strategy
Exclusion and Inclusion Criteria

The search is limited to models that use spectrograms as input, since the predicted
semantic descriptors should be localized and visualized in the spectrogram in later steps
of the master thesis to enhance confidence in the explanation system.
The models searched for, should be suitable for performing a multi-label problem for
audio files, but the search is not restricted to any particular solutions for multi-label
problems.

Resources

The searches are performed on the following databases:

• Scopus

• IEEE Xplore

• Web of Science

Search Terms

("music" OR "audio" OR "song" OR "audio-file") AND ("learning" OR "learn" OR "predic-
tion" OR "predict" OR "model" OR "models" OR "cnn" OR "dnn" OR "neural network")
AND ("multilabel" OR "multi-label") AND ("explanatory" OR "tangible" OR "descriptive"
OR "semantic") AND ("labels" OR "tags" OR "representation" OR "representations" OR
"descriptors" OR "explanation" OR "description" OR "explanations" OR "descriptions")
In IEEE Xplore and Web of Science the search term is applied to all fields. For Scopus
the search is performed within title, abstract and keywords, as the search for using "All
Fields" resulted in 3625 documents not related to the search term.

Search Filters

The filter is set to only include journals, magazines and conference proceedings published
since 2019 in order to be limited to state-of-the-art models. Furthermore, the search is
restricted to publications written in English.

Study Selection Procedures & Quality Assessment

Since this Systematic Literature Review is conducted in the course of this master thesis
to ensure that the state-of-the-art tool used is carefully selected, the selection of the
publications is performed only by the author himself, but to the best of his knowledge
and belief. Only those articles are selected that can answer the review question and
whose proposed model is reproducible and can be implemented in an acceptable amount
of time.
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4.2. Search

4.2 Search

Conducting the automatic search to the respective search engines leads to the following
number of found papers:

Scopus: 14
IEEE Xplore: 10
Web of Science: 15

The result of Scopus was actually 21 but with 7 duplicates. After eliminating the
multiple appearances within the different search engines, the total number of papers
found is 27.

Since we found off-topic publications by the author "Song", the search string is adapted to:

("music" OR "audio" OR "songs" OR "audio-file" OR "audio-files") AND ("learning"
OR "learn" OR "prediction" OR "predict" OR "model" OR "models" OR "cnn" OR "dnn"
OR "neural network") AND ("multilabel" OR "multi-label") AND ("explanatory" OR
"tangible" OR "descriptive" OR "semantic") AND ("labels" OR "tags" OR "representation"
OR "representations" OR "descriptors" OR "explanation" OR "description" OR "explana-
tions" OR "descriptions")

The new result of the respective search engines are as followed:

Scopus: 14
IEEE Xplore: 4
Web of Science: 4

All these papers are analyzed based on their abstracts and filtered according to the
inclusion and exclusion criteria. Only those papers that can be clearly excluded on the
basis of their abstract are removed. Nevertheless, only the following 3 papers remain.

After a short manual search it became clear that the keyword "auto-tagging" is important
for searching multi-label classification models for audio-files. Thus, another search term
is determined to extend the list of found papers:

(„music“ OR „audio“ OR „songs“ OR „audio-file“ OR „audio-files“) AND („model“
OR „models“ OR „cnn“ OR „dnn“ OR „neural network“) AND („auto-tagging" OR "auto
tagging" OR "auto-labeling" OR "auto labeling" OR "music tagging" OR "audio tagging“)
AND ("mel spectrogram" OR "mel-spectrogram“) AND ( "multi-label" OR "multilabel“)

The result of the additional search with the respective search engines are as followed:
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Table 4.1: Systematic Literature Review: Remaining papers after first iteration

Title Authors Year Ref.

Evolutionary Approximation of Instru-
mental Texture in Polyphonic Audio
Recordings

Igor Vatolkin 2020 [Vat20]

Multi-Label Sound Event Retrieval Us-
ing a Deep Learning-Based Siamese
Structure with a Pairwise Presence Ma-
trix

Jianyu Fan; Eric Nichols;
Daniel Tompkins; Ana Elisa
Méndez Méndez; Benjamin
Elizalde; Philippe Pasquier

2020 [FNT+20]

Zero-shot Learning for Audio-Based Mu-
sic Classification and Tagging

Choi, J.; Lee, J.; Park, J.;
Nam, J. 2020 [CN19]

Scopus: 5
IEEE Xplore: 33
Web of Science: 2

In total there are 38 individual papers and after the abstract-based pre-selection, only
eight papers remain.

Most of the eliminated papers aims at a different model than CNN, do not describe a
model at all or focus on a different, classification task like music genre classification.
Additionally some papers focus on approaches taking raw wave or other formats than
mel-spectrograms as input.

The complete list of publications which are analyzed in detail is shown in the following
table.

4.3 Result
4.3.1 Summaries
1) "Evolutionary Approximation of Instrumental Texture in Polyphonic Audio Recordings"
[Vat20] focuses on an algorithm to simultaneously approximate all onsets/chords from a
given audio track and does not provide a model to learn semantic audio characteristics.

2) "Multi-Label Sound Event Retrieval Using a Deep Learning-Based Siamese Structure
with a Pairwise Presence Matrix" [FNT+20] is about learning the similarity level between
two audio instances using a Siamese Neural Network. It does not provide any model for
learning descriptive labels of audio and is therefore not relevant for our review question.
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Table 4.2: Systematic Literature Review: Remaining papers after elimination based on
abstract

ID Title Authors Year Ref

1
Evolutionary Approximation of Instru-
mental Texture in Polyphonic Audio
Recordings

Igor Vatolkin 2020 [Vat20]

2

Multi-Label Sound Event Retrieval Us-
ing a Deep Learning-Based Siamese
Structure with a Pairwise Presence Ma-
trix

Jianyu Fan; Eric Nichols;
Daniel Tompkins; Ana
Elisa Méndez Méndez;
Benjamin Elizalde;
Philippe Pasquier

2020 [FNT+20]

3 Zero-shot Learning for Audio-Based Mu-
sic Classification and Tagging

Choi, J.; Lee, J.; Park, J.;
Nam, J. 2020 [CN19]

4
Implementation of Computationally Ef-
ficient and Accurate Music Auto Tag-
ging

Rajendran, S.; Anandaraj,
S.P. 2022 [RA22]

5
Music Auto-tagging Based on Attention
Mechanism and Multi-label Classifica-
tion

Ju, C., Han, L., Peng, G, 2022 [JHP22]

6 Loss Function Approaches for Multi-
label Music Tagging

Knox, D; Greer,
T; (...); Narayanan,
S.

2021 [KGM+21]

7

How Low Can You Go? Reducing Fre-
quency and Time Resolution in Cur-
rent CNN Architectures for Music Auto-
tagging

Andres Ferraro; Dmitry
Bogdanov; Xavier Serra
Jay; Ho Jeon; Jason Yoon

2021 [FBJ+21]

8
Towards an Efficient Deep Learning
Model for Emotion and Theme Recog-
nition in Music

Srividya Tirunellai
Rajamani;Kumar Raja-
mani;Björn W. Schuller

2021 [RRS21]

9 Data-Driven Harmonic Filters for Audio
Representation Learning

Minz Won;Sanghyuk
Chun;Oriol Nieto;Xavier
Serrc

2020 [WCNS20]

10
Improving Musical Tag Annotation with
Stacking and Convolutional Neural Net-
works

Juliano Donini da Silva;
Yandre Maldonado
Gomes da Costa; Marcos
Aurélio Domingues

2020 [dSdCD20]

11 Augmented Strategy for Polyphonic
Sound Event Detection

Bolun Wang; Zhong-Hua
Fu; Hao Wu 2019 [WFW19]
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3) "Zero-Shot Learning for Audio-Based Music Classification and Tagging" [CN19] is
investigating the zero-shot learning approach for audio domain. The experimental
setting of this paper is about learning genres in an unsupervised way using instrumental
annotations of the FMA dataset as side information in the first experiment and the
LastFM tag annotations for Million Song Dataset in another experiment. The paper does
not include a model related to learning descriptive labels. However, zero-shot learning is
a topic with a lot of potential but the additional study of their possible contribution to
explainability would go beyond the scope of this master thesis.
4) "Implementation of Computationally Efficient and Accurate Music Auto Tagging"
[RA22] looks at the EfficientNet [TL19] model family. They evaluate the contained
models against the MagnaTagATune dataset using mel-spectrograms of three second long
segments and compared by means of accuracy, precision, recall, F1-score and ROC-AUC.
Unfortunately the model is trained and assessed only for genres, which is why the results
are not meaningful enough for our purposes.
5) "Music Auto-tagging Based on Attention Mechanism and Multi-label Classification"
[JHP22] proposes a model for music auto-tagging based on CNN combined with attention
mechanisms. In deep learning models, attention mechanisms aims to reinforce useful
information and suppress the noise of useless information during the feature extraction
[CCJM21]. The proposed model as well as the audio pre-processing are described in
detail and the attention mechanism is reported as Squeeze-and-Excitation (SE) [HSS18].
The model is able to learn music characteristics and is therefore relevant for our thesis.
The model achieves a ROC-AUC of 91.6% for the top 50 tags of MagnaTagATune dataset.
6) "Loss Function Approaches for Multi-label Music Tagging" [KGM+21] evaluates
the best loss function for a short-chunk model proposed in "Evaluation of CNN-based
Automatic Music Tagging Models" [WFBS20]. The paper describes the presented model
in detail and additionally the code is provided ensuring full reproducibility. The model is
compared to FCN and Musicnn (see next paragraph), a Self-Attention CNN, a CRNN,
a raw waveform sample level CNN and a harmonic CNN (see paragraph 9) for three
different datasets, including MagnaTagATune. The proposed model achieved the best
performance on two datasets (MTAT, MSD) and shared first place with the harmonic
CNN in the third dataset (MTG-Jamendo). The model is applicable for the explanation
system approach and is therefore relevant for this thesis. ROC-AUC for top 50 tags of
MagnaTagATune is reported with 91.3%.
7) "How Low Can You Go? Reducing Frequency and Time Resolution in Current CNN Ar-
chitectures for Music Auto-tagging" [FBJ+21] investigates the impact of different settings
for creating mel-spectrograms on performance in terms of fewer frequency bands and
larger frame rates. This is done for a CNN from [CFS16] called FCN (Fully convolutional
neural network) and the Musicnn [PPNCP+18] for the MagnaTagATnue dataset as well
as for the MillionSongDataset with LastFM tags for the top 50 tags respectively. The
Musicnn outperforms the FCN with a ROC-AUC of 90.8% for MagnaTagATune. However,
also FCN achieves a remarkable performance of ROC-AUC 89.4% for MagnaTagATune
with only 4 convolutional layers [CFS16]. Both models are described in detail in their
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original publication and are able to learn music characteristics, which make them ap-
plicable for the explanation system approach. Additionally, more details on Musicnn
audio preprocessing and a git repository with the model implementation is provided by
[FBJ+21].

8) "Towards an Efficient Deep Learning Model for Emotion and Theme Recognition in
Music" [RRS21] proposes a CNN with a self-attention mechanism for emotion and theme
recognition in music. The main goal of the investigation is the reduction of the floating
point operations per second (FLOPS) to optimize the deployment of such models to
facilitate the training on hardware with limited resources. The model itself as well as
the implementation details and parameters such as learning rate, optimizer and epochs
are described in detail. The model is trained and evaluated for emotion and theme data
only and not for a dataset with general music properties, and is able to achieve a 72.6%
ROC-AUC.

9) "Data-Driven Harmonic Filters for Audio Representation Learning" [WCNS20] intro-
duced a method to create a new kind of input spectrograms for convolutional neural
networks in the audio segment. As harmonic structure is an important factor in human
auditory perception, their approach is to extend the common dimensions of spectrograms
with harmonic as a third dimension by applying harmonic filters after the short-time
Fourier Transformation (SFTF). The CNN used to evaluate the proposed method is the
same as the short chunk model described in [WFBS20].

10) "Improving Musical Tag Annotation with Stacking and Convolutional Neural Net-
works" [dSdCD20] presents two approaches of music auto-tagging with CNN combined
with stacking. Stacking is a technique in which at least two stages are used and the
outcome of a previous stage is used as input for, or at least affects, the next stage. In
this paper both approaches used two stages with the same CNN. In the first approach
the same input is used for both stages but in stage two the weights are initialized with
the weights of stage one. In the second approach an autoencoder neural network, a CNN
consisting of two phases, encode and decode, is used. The encode phase is intended to
learn the desired result and is reducing the dimension of the input. The decode phase is
to scale up the dimension and is used in stage one to create the input of stage two. For
both proposed approaches the networks and the generation of the mel-spectrogram are
described in-depth and are applied to the datasets FMA, MagnaTagATune and Million
Song Dataset. The first approach achieves better performance as compared to the second
approach and has a ROC-AUC of 89% for the MagnaTagATune dataset.

11) "Augmented Strategy for Polyphonic Sound Event Detection" [WFW19] describes
a new method for augmenting audio events to increase the amount of training data for
sound event detection. The augmentation strategy also includes a CNN for audio tagging
which is described in the paper. However, the entire strategy, and thus the tagging,
is applied to a dataset with annotated sound events in domestic environments and is
therefore not meaningful for our objective.
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4.3.2 Selection
We can select five models, each with a ROC-AUC of approximately 90% for the task of
learning descriptive labels for music using the dataset MagnaTagATune. Since our goal is
a model that learns descriptive labels to explain genre classifications, we will remove all
genre related labels from the dataset before we train the models. Thus we do not train
them for the same data as the original papers do, as no such restriction is made at any
of the presented papers.

Table 4.3: Systematic Literature Review: Resulting models and their performance for
the top 50 tags of MagnaTagATune

ID Model Name ROC-AUC

5 SE-CNN [JHP22] 91.6%

6 Short-Chunk CNN [WFBS20] 91.3%

7 FCN [CFS16] 89.4%

7 Musicnn [FBJ+21] 90.8%

10 Stacked CNN [dSdCD20] 89.0%
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CHAPTER 5
Explaining Genre Classification

with Semantic Descriptors

In this chapter an approach to explain convolutional neural network genre decisions based
on descriptive labels is presented. For learning the descriptive labels for audio files we
chose a model based on the results of the systematic literature review described in the
previous chapter. Further, we train a model to map descriptive labels to genres to assess
how accurately the predicted descriptors match the ground truth genre. The visualization
of the generated explanations can enhance trustworthiness of the explanation system
[HHDA18], therefore we visualize the descriptive label in the input spectrogram. As
discussed in Section 2.3, we use the MagnaTagATune dataset to train and test our models.

5.1 Learning Semantic Descriptors
In this section, we determine a model for predicting semantic descriptors that will serve
as the explanations for our explanation system approach. In the overview Figure 2.1,
this part is shown in the bottom section. For this reason, we describe in detail all models
found in the systematic literature review in terms of mel-spectrogram creation and model
architecture, train them and compare their performance to be able to determine the most
appropriate model for our application.

5.1.1 Data Pre-processing
The MagnaTagATune dataset has a total of 188 tags. Since several of them are synonyms
or are very similar to others, we analyze them and determine tags as equivalent as shown
in Table 5.1. Since we want to use this tag set to describe and explain genre decisions,
genre-tags are excluded. Further, we exclude the tags english and not english. Thus, the
excluded tags are rock, indian, pop, new age, country, metal, electronic, classic, rap, hip

29



5. Explaining Genre Classification with Semantic Descriptors

hop, reggae, punk, blues, not opera, not rock, not classical, funk, folk, jazz, disco, not
english and english. Finally, we obtain a total of 108 remaining tags which are used as
the descriptive labels for our explanation approach.

Table 5.1: Equivalent Tags of MagnaTagATune

Synonyms

classic, classical, classical, opera, op-
eratic, female opera, male opera

male vocals, male, male singer,
male vocal, male voice, man, man
singing, men

female vocals, female, female
singer, female singing, female voice,
woman, woman singing, women

no vocals, no singer, no singing, no
vocal, no voice, no voices, instrumen-
tal

electronic, electro, electronica, elec-
tric, dance, techno

jazz, jazzy

beat, beats guitar, guitars
chant, chanting flute, flutes
choir, choral harpsichord, harpsicord
drums, drum vocals, vocal, voice, voices
fast, fast beat, quick rock, soft rock, hard rock
metal, heavy metal orchestra, orchestral
horn, horns quiet, silence
indian, india singer, singing
no drums, no beat space, spacey
string, strings violin, violins
synthesizer, synth strange, weird

As most models do not take a whole audio file but smaller sections as input we keep 2,000
audio file aside, which are tagged with only one genre, to use them for testing the models
on an audio file level as well as for the descriptor to genre mapping to asses how accurate
the predicted descriptors of all sections fit the ground truth genres. From all remaining
audio file, we filter out all those that do not have at least one tag, resulting in a total
set of 18,373 audio files. An overview of how often the respective tags are tagged within
the remaining instances can be seen in Figure 5.1. While the top ten tags are all tagged
at least 1,925 times, the top 50 tags already only occur at least 173 times. We train all
models for the top 50, top 80 and all 108 tags and compare them based on performance
metrics but also with the descriptor-genre mapping model we provide in section 5.2.
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5.1. Learning Semantic Descriptors

Figure 5.1: Tag Histogram of the 108 remaining Tags after Pre-Processing the MagnaTa-
gATune Dataset

5.1.2 SE-CNN

Music automatic tagging is the process of learning descriptive labels from audio files to
be able to predict music characteristics for non-tagged audio files and can be divided
into the tasks of audio pre-processing (mel-spectrogram creation), feature extraction
(convolutional layers) and classification (fully connected layer) [JHP22]. Ju et al. [JHP22]
focused on the improvement of feature extraction and proposed a CNN model with an
attention mechanism. In conventional CNN models, during the convolution process, no
relation is learned between the feature maps output by a convolution layer [JHP22]. The
attention mechanism addresses this problem and helps the model to focus on important
parts of input data by assigning weights to them. This way, the model can give more
importance to relevant information while ignoring irrelevant data [JHP22]. To take
such dependencies between feature maps into account, Ju et al. [JHP22] added the
Squeeze-and-Excitation (SE) block [HSS18] to the model, which also gives the model its
name.

The following paragraphs provide a detailed description of our implementation of the
SE-CNN model as proposed in [JHP22].
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Mel-Spectrogram Creation

Since the input shape dimension of the model is 128x628 and the audio data are resampled
to 11,025 Hz, we conclude the authors use a hop length of 256 and the 128 mel bins for
the creation of the mel-spectrogram. Since the length of the fast fourier transformation
(FFT) window is not documented we use a length of 512. Additionally, we train the
model for audio data with their original sampling rate of 16 kHz. As this results in a
mel-spectrograms with a shape of 128x911, we cut them into 128x628 slices with a hop
length of 90 to get four slices from each audio file.

Implementation Details

The model consists of 5 convolutional layers which are all followed by a Squeeze-and-
Excitation (SE) block. The SE block consists of a global average pooling of the output of
a convolutional layer, a fully connected layer with ReLU activation and a fully connected
layer with sigmoid activation, which output is multiplied by the output of the respective
convolutional layer. Max-pooling layers are added after the first three SE blocks with
filter size 2x4 and after the fifth SE block with filter size 2x2. After the last max-pooling
layer, a flatten layer, a batch normalization layer, a dropout layer with a rate of 0.6
and finally a sigmoid layer are added. The output dimension of the sigmoid layer is
accordingly set to 50, 80 and 108, since we train it for the top 50, top 80 and all 108
tags as described in Section 5.1.1. A more detailed description of the used layers can be
found in Table 5.2. For training the model, the ADAM optimizer with a learning rate of
0.0001 following the original paper is used.

5.1.3 Short-Chunk CNN

Won et al. [WFBS20] provide a simple seven-layer CNN for 3.69s audio excepts. This
model outperforms state-of-the-art music auto-tagging models for the top 50 tags of
MagnaTagATune. Because of the use of such short audio snippets the model is called
"Short-Chunk CNN".

The following paragraphs provide a detailed description of the Short-Chunk CNN model
proposed in [WFBS20].

Mel-Spectrogram Creation

The mel-spectrograms are created for the audio origin sample rate of 16 kHz, a FFT
window of length 512, a hop length of 256 and 128 mel bins, which leads to a mel-
spectrogram of the size 128x1821 for each of 29 seconds long audio files. To obtain the
reported 3.69-second excerpts, we cut the total mel-spectrogram into 230 long pieces
with a hop length of 115, resulting in 14 mel spectrograms for each and a total of 257,222
for all 18,373 audio files.
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Table 5.2: Detailed description of SE-CNN Model [JHP22] (for 108 tags)

Layer (Filter/Pool Size) Output Shape Nr. of Parameters
Input Layer (128, 628, 1) 0
Convlolutional Layer (ReLU) (3x7) (128, 628, 50) 1,100
SE-Block (128, 628, 50) 0
MaxPooling2D (2x4) (64, 157, 50) 0
Convlolutional Layer (ReLU) (3x5) (64, 157, 100) 75,100
SE-Block (64, 157, 100) 0
MaxPooling2D (2x4) (32, 39, 100) 0
Convlolutional Layer (ReLU) (3x3) (32, 39, 70) 63,070
SE-Block (32, 39, 70) 0
MaxPooling2D (2x2) (16, 19, 70) 0
Convlolutional Layer (ReLU) (3x3) (16, 19, 70) 44,170
SE-Block (16, 19, 70) 0
Convlolutional Layer (ReLU) (3x3) (16, 19, 70) 44,170
SE-Block (16, 19, 70) 0
MaxPooling (2x2) (8, 9, 70) 0
Flatten (5040) 0
Batch Normalization (5040) 20,160
Dropout (0.6) (5040) 0
Dense (Sigmoid) (108) 544,428
Total params: 793,738
Trainable params: 783,738
Non-trainable params: 10,080

Implementation Details

The model is composed of seven convolution layers with 3x3 filters, each followed by
a batch normalization, a ReLU and a max-pooling layer with a pool size of 2x2. The
first two convolutional layers use a number of 128 filters, the following four layers use
256 filters and the last layer use 512 filters, resulting in an output of 128, 256 and 512
feature maps, respectively. Subsequently, a flatten layer, a dense layer with 512 units
and a batch normalization is added. Finally, another dense layer with 50 units followed
by a dropout of 0.5, a ReLU layer and finally the sigmoid activation is added. For the
training of the model, the ADAM optimizer with a learning rate of 0.0001 is used. A
detailed listing of the layers can be found in Table 5.3. We adjusted the last four layers
to an outcome of 80 and 108 depending on which tag set is used for training.
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Table 5.3: Detailed description of Short-Chunk CNN Model [WFBS20] (for 108 tags)

Layer (Filter/Pool Size) Output Shape Nr. of Parameters
Input Layer (128, 230, 1) 0
Convlolutional Layer (3x3) (128, 230, 128) 1,280
Batch Normalization (128, 230, 128) 512
ReLU (128, 230, 128) 0
MaxPooling2D (2x2) (64, 115, 128) 0
Convlolutional Layer (3x3) (64, 115, 128) 147,584
Batch Normalization (64, 115, 128) 512
ReLU (64, 115, 128) 0
MaxPooling2D (2x2) (32, 57, 128) 0
Convlolutional Layer (3x3) (32, 57, 128) 295,168
Batch Normalization (32, 57, 128) 1,024
ReLU (32, 57, 128) 0
MaxPooling2D (2x2) (16, 28, 128) 0
Convlolutional Layer (3x3) (16, 28, 256) 590,080
Batch Normalization (16, 28, 256) 1,024
ReLU (16, 28, 256) 0
MaxPooling2D (2x2) (8, 14, 256) 0
Convlolutional Layer (3x3) (8, 14, 256) 590,080
Batch Normalization (8, 14, 256) 1,024
ReLU (8, 14, 256) 0
MaxPooling2D (2x2) (4, 7, 256) 0
Convlolutional Layer (3x3) (4, 7, 256) 590,080
Batch Normalization (4, 7, 256) 1,024
ReLU (4, 7, 256) 0
MaxPooling2D (2x2) (2, 3, 256) 0
Convlolutional Layer (3x3) (2, 3, 512) 1,180,160
Batch Normalization (2, 3, 512) 2,048
ReLU (2, 3, 512) 0
MaxPooling2D (2x2) (1, 1, 512) 0
Flatten (512) 0
Dense (512) 262,656
Batch Normalization (512) 2,048
Dense (108) 55,404
Dropout (0.5) (108) 0
ReLU (108) 0
Sigmoid (108) 0
Total params: 3,721,708
Trainable params: 3,717,100
Non-trainable params: 4,60834
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5.1.4 FCN-4
Choi et al.[CFS16] evaluated fully convolutional neural networks for automatic music
tagging with a varying number of convolutional layers and different inputs. The 4-layer
architecture (named FNC-4) using mel-spectrograms as an input, achieve state-of-the-
art performance and outperform the other proposed models for the top 50 tags of
MagnaTagATune. As Ferraro et al.[FBJ+21] provide an adjustment for the FCN-4 model
for smaller inputs, we consider this implementation as well. The adaption of FCN-4 is
called VGG-CNN as it is based on a Convolutional Neural Network from the Visual
Geometry Group (VGG) [SZ15] which develops models for the computer vision field.

In the following paragraphs we describe the implementation of the FCN-4 model as
proposed in [CFS16] and the implementation of FCN-4 adaptation as described in
[FBJ+21].

Mel-Spectrogram Creation

For the mel-spectrogram creation the audio is resampled to 12 kHz and FFT with a
window and hop length of 256 is applied. Because 96 mel bins are used, the result for
each 29 second audio file is a 96x1366 mel-spectrogram, which is used as input for the
model.

Implementation Details

The model consists of four convolutional layers, each with a filter size of 3x3 and a number
of filters of 128, 384, 768, and 2048, respectively. Subsequent to each convolutional layer,
batch normalization, ReLU activation and dropout of 0.5 is added. The output layer is a
dense layer with sigmoid activation and 50 units. Additionally, we also adjust the output
layer to 80 and 108 units according to the tag set used for training. A detailed listing of
the layers can be found in Table 5.4. For training the model, the ADAM optimizer with
a learning rate of 0.0001 is used.

VGG-CNN (FCN-4 Adaptation)

Ferraro et al. [FBJ+21] presents max-pooling layer adjustments for smaller mel-spectrogram
input sizes for the FCN-4 and call it VGG-CNN. Furthermore, Won et al. [WFBS20] shows
that mel-spectrogram from shorter audio excerpts perform better at music auto-tagging.
Therefore, instead of reducing the input size by creating a smaller mel-spectrogram with
different FFT window sizes and hop lengths, we create a mel-spectrogram with an FFT
window of length 512 and a hop length of 256, resulting in a mel-spectrogram of size
128x1821, and split it into pieces of size 128x342 with a hop size of 171. This setting
results in nine mel-spectrograms per audio file, increasing the amount of training data
from 18,373 for FCN-4, as it uses only one mel-spectrogram per audio file, to 165,357 for
VGG-CNN. According to [FBJ+21] we adjusted the pool size of the third max-pooling
layer from 3x8 to 4x8 and the stride, the step size of the pooling window, from 2x4 to
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Table 5.4: Detailed description of FCN-4 Model [CFS16] and the adaption based on
[FBJ+21] (for 108 tags)

Layer Setting Output Shape Nr. of
ParametersOrigin Adaptation Origin Adaptation

Input Layer 96x1366x1 128x342x1 0
Convlolutional Layer Filter:3x3 Filter:3x3 96x1366x128 128x342x128 1,280
Batch Normalization 96x1366x128 128x342x128 512
ReLU 96x1366x128 64x86x128 0
MaxPooling2D Pool:2x4 Pool:2x4 48x342x128 64x86x128 0
Dropout 0.5 0.5 48x342x128 64x86x128 0
Convlolutional Layer Filter:3x3 Filter:3x3 48x342x384 64x86x384 442,752
Batch Normalization 48x342x384 64x86x384 1,536
ReLU 48x342x384 64x86x384 0
MaxPooling2D Pool:4x5

Stride:2x4
Pool:4x5

Stride:2x4
24x86x384 32x22x384 0

Dropout 0.5 0.5 24x86x384 32x22x384 0
Convlolutional Layer Filter:3x3 Filter:3x3 24x86x768 32x22x768 2,654,976
Batch Normalization 24x86x768 32x22x768 3,072
ReLU 24x86x768 32x22x76 0
MaxPooling2D Pool:3x8

Stride:2x4
Pool:4x8

Stride:3x4
12x22x768 11x6x768 0

Dropout 0.5 0.5 12x22x768 11x6x768 0
Convlolutional Layer Filter:3x3 Filter:3x3 4x8x2048 4x2x2048 14,157,824
Batch Normalization 4x8x2048 4x2x2048 8,192
ReLU 4x8x2048 4x2x2048 0
MaxPooling2D Pool:4x8 Pool:4x2 1x1x2048 1x1x2048 0
Dropout 0.5 0.5 1x1x2048 1x1x2048 0
Dense 108 108 221,292
Sigmoid 108 108 0
Total params: 17,491,436
Trainable params: 17,484,780
Non-trainable params: 6,656

3x4 and the pool size of the fourth max-pooling layer from 4x8 to 4x2. A detailed listing
of the CNN layers and their settings can be found in Table 5.4. For training the model,
the ADAM optimizer with a learning rate of 0.001 is used.
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5.1.5 Musicnn
Ferraro et al. investigated the performance for different settings in mel-spectrogram
creation for the Musicnn model introduced in [PPNCP+18] and adjusts the filter sizes of
the CNN layers for different input sizes in such a way that the output dimensions of the
last convolution layer keep the same for all input sizes. In addition, the size of the audio
segments used is set to three seconds, as they achieve better performance than with the
original 15-second segments [FBJ+21].

Mel-Spectrogram Creation

The mel-spectrogram is created with a sample rate of 16 kHz, a FFT with a window
size of 512 and hop length of 256 and 128 mel bins, resulting in a mel-spectrogram of
size 128x1821. To obtain the three second segments the mel-spectrogram is divided into
128x188 sized mel-spectrograms leading to 18 mel-spectrogram per audio file and 330,714
mel-spectrograms in total.

Implementation Details

The architecture of the Musicnn consists of two different sets of convolutional layers
applied in parallel on the input mel-spectrogram. One set uses the filter shapes 1x165,
1x128, 1x64 and 1x32, with the aim of learning temporal patterns. Each of these
convolutional layers uses ReLU activation and a subsequent batch normalization. The
second set of convolutional layers uses the filter shapes 1x51, 3x51, 7x51, 1x115, 3x115,
and 7x115, the ReLU activation and are followed by batch normalization and a max-
pooling layer. The aim of the second convolutional layer set is to learn timbre related
features. The results of the parallel applied convolutional layers are concatenated and
further processed in three additional convolutional layers with ReLU activation, two
pooling layers (one max-pooling and one global pooling) and a dense layer with 200 units
and ReLU activation. Finally, a dense layer of 50, 80 or 108 units depending on the
number of tags we train the model with and sigmoid activation is added as output layer.
ADAM with a learning rate of 0.001 is used as optimization method. For a more detailed
information of the layers we refer to the origin publication of Musicnn [PPNCP+18] or
the git repository1 of Ferraro et al.

5.1.6 Stacked CNN
Donini da Silva et al. have proposed two different approaches for music auto-tagging
with mel-spectrograms using CNN architectures with stacking technique, which means
using at least two training stages, while the prediction generated after the first training
are used as input for the second training of the CNN [dSdCD20]. One approach is based
on an auto-encoder, a CNN architecture which first compress an image to a smaller
dimensioned representation (encoder) and then reconstructs the compressed data to

1https://github.com/andrebola/EUSIPCO2020
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an image similar to the original (decoder). In the auto-encoder approach, first the
whole auto-encoder is used to produce mel-spectrograms approximately 50% smaller
than the original one. Afterwards only the encoder is used to predict tags taking the
previous generated mel-spectrograms as input. The second architecture consists only
of convolutional layers, batch normalization, dropout, max-pooling and dense layers,
and uses the same input for both training stages, except that in stage one the weights
are randomly initialized and in stage two the learned weights from stage one are used
[dSdCD20].

Even though the performance of the second model hardly improve in stage two, it achieves
better performance with 89% ROC-AUC for the MagnaTagATune Dataset than the
first model with ROC-AUC of 81%, and therefore is implemented and evaluated for the
purpose of this work.
The following two paragraphs present details on the implementation of the model based
on the original paper [dSdCD20] and the repository2.

Mel-Spectrogram Creation

For the mel-spectrogram creation the audio is resampled to 22,050 Hz, FFT is applied
with a window size of 8,192 and hop length of 2,048 and 128 mel bins are used. This
configuration results in 128x314 sized mel-spectrograms.

Implementation Details

The selected stacked CNN model has seven convolutional blocks, each block consisting
of a convolutional layer with a 3x3 filter and a ReLU activation, a batch normalization
layer, a dropout layer and a max-pooling layer with a pool size of 2x2. The number
of output filters of the convolutional layers are 16, 32 and 64, respectively, for the first
three convolutional layers, 128 for the fourth and fifth convolutional layers, and 256 for
the last two convolutional layers. The rate of the dropout layers is 0.2 for the first two
blocks, 0.25 for the third block and 0.3 for the last four blocks. Following the convolution
blocks, there is a dense layer with 256 units, one with 128 units, and an output layer
with sigmoid activation and a number of units equal to the number of tags to be learned.
A detailed listing of the layers can be found in Table 5.5. For training the model, the
ADAM optimizer with a learning rate of 0.001 is used.

5.1.7 Results
The 18,373 audio files are split into 80% training set and 20% test set. The training set is
split again with a ratio of 9:1 for validation purposes. Afterwards, the mel-spectrograms
are created according to the respective models. We train all models with 120 epochs
but reduced the learning rate from epoch 80 using the LearningRateScheduler callback
method of Keras. We also used Keras’ callback method EarlyStopping to stop the training

2https://gitlab.com/jdonini/stacking-audio-tagging
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Table 5.5: Detailed description of Stacked CNN Model [dSdCD20] (for 108 tags)

Layer (Filter/Pool Size) Output Shape Nr. of Parameters
Input Layer (128, 314, 1) 0
Convlolutional Layer (ReLU) (3x3) (128, 314, 16) 160
Batch Normalization (128, 314, 16) 64
Dropout (0.2) (128, 314, 16) 0
MaxPooling2D (2x2) (64, 157, 16) 0
Convlolutional Layer (ReLU) (3x3) (64, 157, 32) 4,640
Batch Normalization (64, 157, 32) 128
Dropout (0.2) (64, 157, 32) 0
MaxPooling2D (2x2) (32, 78, 32) 0
Convlolutional Layer (ReLU) (3x3) (32, 78, 64) 18,496
Batch Normalization (32, 78, 64) 256
Dropout (0.25) (32, 78, 64) 0
MaxPooling2D (2x2) (16, 39, 64) 0
Convlolutional Layer (ReLU) (3x3) (16, 39, 128) 73,856
Batch Normalization (16, 39, 128) 512
Dropout (0.3) (16, 39, 128) 0
MaxPooling2D (2x2) (8, 19, 128) 0
Convlolutional Layer (ReLU) (3x3) (8, 19, 128) 147,584
Batch Normalization (8, 19, 128) 512
Dropout (0.3) (8, 19, 128) 0
MaxPooling2D (2x2) (4, 9, 128) 0
Convlolutional Layer (ReLU) (3x3) (4, 9, 256) 295,168
Batch Normalization (4, 9, 256) 1,024
Dropout (0.3) (4, 19, 256) 0
MaxPooling2D (2x2) (2, 4, 256) 0
Convlolutional Layer (ReLU) (3x3) (2, 4, 256) 590,080
Batch Normalization (2, 4, 256) 1,024
Dropout (0.3) (2, 4, 256) 0
MaxPooling2D (2x2) (1, 2, 256) 0
Flatten (512) 0
Dense (256) 131,328
Dense (128) 32,896
Dense (108) 13,932
Sigmoid (108) 0
Total params: 1,311,660
Trainable params: 1,309,900
Non-trainable params: 1,760
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Table 5.6: SE-CNN - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 87.3% 95.5% micro 63.2% 30.9%
macro 37.0% 19.5%

80 85.7% 97.0% micro 61.6% 29.6%
macro 31.4% 13.3%

108 85.7% 97.6% micro 61.1% 28.8%
macro 24.7% 10.2%

process if the validation loss could not be improved within 30 epochs. After training,
the best weights are loaded based on validation accuracy (binary) and the models are
evaluated on the test set.

Since the finally selected model is applied to a whole audio file as part of the explanation
system, but are trained for smaller mel-spectrogram sections, we also test the models
on audio file level on the 2000 audio files set aside, and determined the performance on
each individual tag. Therefore, we created a mel-spectrogram for each of the 2000 audio
file and cut out as many mel-spectrogram frames as possible to create with a window
size equal to the input length and a hop size half the length of the input frame for the
respective model. We applied the models to each frame and collected all tags from all
frames for each audio file. We have also conducted experiments where we have considered
only tags that occur more frequently than certain threshold values, but achieve the best
performance for collecting each tag. Afterwards, the overall performance as well as the
performance on the different tags are determined.

For assessing the performances we focus on recall. The reason for this is the very sparse
database, which drives accuracy upwards. A model that predicts no descriptor at all
would have a very high accuracy for our dataset. Since songs of the MagnaTagATune
dataset are tagged by non-experts in the context of a game, whose main goal was not to
tag the music complete, there are also many music characteristics per song that are not
tagged. This also means that we can rather tell that a missing prediction (false negative)
is actually a missing characteristic than a falsely predicted descriptor (false positive) is
actually not a characteristic of the song. Since precision considers the false positive rate
in contrast to recall we focused recall, but did not completely disregard precision, since
models that always predict all tags would result in 100% recall.

SE-CNN

For SE-CNN we achieve the best results for a batch size of 32. The observed performance
for each tag set is reported in Table 5.6.

The 2,000 audio files, for testing a whole audio file, are tagged 5,246 times with the top
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Table 5.7: SE-CNN - Top 10 Tags Performance

Tag Presence Performance

choir 708 84.3%
77.8%

male vocals 2,007 83.3%
49.3%

guitar 4,279 74.4%
87.3%

cello 457 72.0%
73.3%

flute 951 71.1%
54.6%

violin 1,579 68.5%
73.7%

female vocals 1,758 67.2%
66.7%

harpsichord 791 66.2%
76.0%

beat 2,057 63.6%
40.8%

vocals 2,570 58.9%
42.3%

Recall Precision

50 tags in total. The model trained for the top 50 tags predicts 1.7 tags on average and
achieve a ROC-AUC of 87.5%, a micro-averaged recall of 39.6% and a micro-averaged
precision with 61.5%. The slightly better performance than in the sample-level test result
is a logical consequence, since we have the same ground truth at the audio file level as
at the sample-level, but in case of a whole audio file we use more mel-spectrograms for
prediction. The result for the ten tags performing the best are reported in Table 5.7.
Almost all tags that perform poorly, with recall below 10%, are those tags that occur
rarely (less than 1%) in the training data, such as acoustic, funky, no guitar, no drums,
bells, electric guitar or percussion. The exception is strange, soft, quiet, synthesizer and
solo which are in the middle range in terms of frequency in the training data and no
vocals which is the 6th most frequently tagged characteristic. In general, tags related to
an instrument obtain good performance in relation to their frequency in the training data,
while the tempo characteristics fast and slow perform worse. For the models trained on
the top 80 and all 108 tags the top 50 tags achieve similar performance than in the top
50 set, while all the additional characteristics perform poorly with less than 10% recall.
This was to be expected, as we observe a significantly decrease of the macro-averaged
performances the more tags are used.
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Table 5.8: Short-Chunk CNN - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 88.5% 95.7% micro 62.4% 38.9%
macro 37.8% 25.0%

80 88.4% 97.1% micro 65.4% 34.5%
macro 36.0% 18.4%

108 88.0% 94.5% micro 66.0% 29.3%
macro 23.1% 12.3%

Short-Chunk CNN

The Short-Chunk CNN achieves the best performance for a batch size of 16. The best
observed results for each tag set are shown in Table 5.8.

For the audio file level test on the separated 2,000 audio files, the model trained for the
top 50 tags predicts 3.1 tags on average per song. It achieves a ROC-AUC score of 90.0%,
49.0% micro-averaged precision and 58,7% micro-averaged recall. The result for the ten
best-performing tags are presented in Table 5.9. As the SE-CNN, also the Short-Chunk
CNN achieves better performance for instruments than for characteristics like, slow, fast,
loud, quiet and soft. Again, most characteristics that perform very poorly are those that
are tagged rarely. Exceptions are strange, modern and trance which are in the middle
field in terms of frequency, as well as no vocals and singer from the upper field. Also
for the Short-Chunk CNN, the model trained for 80 and 108 tags predicted similar tags
with good performance in a similar order and can not provide new tags that achieve a
reasonable performance.

FCN-4

The FCN-4 model performs best for a batch size of 64. The observed performance for
each tag set is reported in Table 5.10.

FCN-4 achieves a good ROC-AUC value of 87.8% for the 2,000 separated audio files.
Nevertheless, it only predicts 0.6 tags per song on average and achieves a micro-averaged
precision score of 64.6% and micro-averaged recall score of 14.3%. It achieves a recall
greater than 0% for 19 tags, and achieves only for three tags a recall above 50%. Precision
and recall scores for the ten best-performing tags with FCN-4 are given in Table 5.11. It
is worth mentioning that FCN-4 achieves good performance for the characteristics loud
and fast, which are difficult to predict for other models.

VGG-CNN

The VGG-CNN model achieves the best performances for a batch size of 128. The results
for each tag set are presented in Table 5.12.
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Table 5.9: Short-Chunk CNN - Top 10 Tags Performance

Tag Presence Performance

guitar 4,279 95.5%
60.3%

drums 2,620 94.9%
24.4%

violin 1,579 94.2%
50.0%

female vocals 1,758 94.1%
58.0%

choir 708 94.0%
57.4%

male vocals 2,007 92.6%
47.2%

flute 951 89.2%
43.8%

cello 457 85.6%
59.4%

string 2,324 79.5%
48.4%

harpsichord 791 76.1%
86.3%

Recall Precision

Table 5.10: FCN-4 - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 84.2% 95.0% micro 58.9% 13.8%
macro 28.6% 7.7%

80 82.5% 96.7% micro 58.5% 13.1%
macro 15.9% 4.1%

108 82.3% 97.5% micro 58.3% 13.1%
macro 14.7% 3.9%
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Table 5.11: FCN-4 - Top 10 Tags Performance

Tag Presence Performance

choir 708 68.7%
68.7%

loud 1,033 67.9%
30.5%

guitar 4,279 59.4%
80.2%

male vocals 2,007 31.5%
45.5%

violin 1,579 28.4%
81.6%

sitar 896 26.7%
44.4%

beat 2,057 22.7%
53.6%

fast 2,143 21.4%
54.8%

chant 287 20.0%
27.8%

string 2,324 11.1%
64.0%

Recall Precision

Table 5.12: VGG-CNN - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 88.3% 95.6% micro 64.1% 36.9%
macro 44.4% 24.0%

80 88.4% 97.1% micro 66.0% 31.3%
macro 31.9% 15.6%

108 87.2% 97.7% micro 64.4% 31.9%
macro 27.9% 12.0%
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Table 5.13: VGG-CNN - Top 10 Tags Performance

Tag Presence Performance

choir 708 92.8%
58.3%

violin 1,579 90.2%
64.8%

female vocals 1,758 90.0%
67.7%

guitar 4,279 88.6%
66.6%

male vocals 2,007 83.3%
44.7%

cello 457 81.4%
60.4%

harpsichord 791 75.5%
82.5%

vocals 2,570 71.6%
41.6%

flute 951 71.1%
67.1%

sitar 896 66.7%
51.2%

Recall Precision

For the audio file level test set, the VGG-CNN model trained on the top 50 tags pre-
dicts 2.6 tags on average for each audio file. It achieves a ROC-AUC score of 90.4%,
micro-averaged precision of 55.3% and micro-averaged recall of 54.0%. Table 5.13 shows
precision and recall for the ten best-performing tags. Also for this model the most tags
that perform poorly, with recall below 10%, are tags which are rarely present in the
training data, such as acoustic, oriental, dark, funky, no guitar, no drums, bells or electric
guitar. The exception is trance, modern, strange and no piano, which are in the middle
range in terms of occurrence in the training data and no vocals, soft and loud which
are in the top 20 of the most frequently tagged characteristics. We obtain no major
differences in tag performance and tag order between models trained on the top 80 and
all 108 tags. All additional tags in the top 80 and all 108 tag sets can only achieve a
recall below 10%.

Musicnn

The Musicnn performs best with a batch size of 64. Table 5.14 shows the performance of
Musicnn for each tag set.
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5. Explaining Genre Classification with Semantic Descriptors

Table 5.14: Musicnn - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 86.9% 95.6% micro 68.9% 26.7%
macro 36.3% 16.5%

80 87.3% 97.0% micro 70.1% 24.7%
macro 33.7% 10.6%

108 86.1% 97.7% micro 66.7% 26.7%
macro 24.0% 8.4%

The Musicnn model predicts 2.3 tags on average for each song of the audio file level test
set for the top 50 tags. It achieves a ROC-AUC score of 87.9%, micro-averaged precision
of 49.4% and micro-averaged recall of 43.5%. The results for the ten best-performing tags
are shown in Table 5.15. As also observed for the other models, Musicnn performs bad
for tags that are tagged rarely in the training dataset. With an exception for the tags no
vocals, soft and loud, which have a bad performance despite their frequent occurrence in
the train set as it is the case for VGG-CNN. The Musicnn model trained for 80 and 108
tags achieve similar performance for the tags from the top 50 tag set, but do not obtain
any performance above 10% recall for the additional tags.

Stacked CNN

The VGG-CNN model achieves the best performances for batch sizes of 8, 16 and 32.
The performance for each tag set is reported in Table 5.16.

Table 5.16: Stacked CNN - Performance

Top x Tags ROC-AUC Accuracy Averaging Precision Recall

50 86.0% 94.8% micro 50.7% 35.7%
macro 35.99% 30.54%

80 84.7% 96.3% micro 45.9% 38.1%
macro 25.0% 21.2%

108 84.3% 96.9% micro 40.0% 32.3%
macro 17.5% 15.7%

For the audio file level test set, the Stacked CNN model trained on the top 50 tags
predicted 2.2 tags on average. It achieves a ROC-AUC score of 83.4%, micro-averaged
precision of 47.7% and micro-averaged recall of 39.8%. The results for the ten best-
performing tags can be found in Table 5.17. The most tags that perform poorly, with
recall below 10%, are tags which are rarely present in the training data. The exceptions
for this model is trance, modern, bass, strange, soft and no piano, which are in the middle
range and no vocals, singer from the top range. The tags slow, fast and soft achieve
slightly above 10% in recall and the tags quiet and loud have with 57.8% and 50.9%
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Table 5.15: Musicnn - Top 10 Tags Performance

Tag Presence Performance

guitar 4,279 95.2%
58.8%

choir 708 94.0%
47.0%

female vocals 1,758 92.0%
50.1%

violin 1,579 89.3%
60.6%

flute 951 88.0%
31.7%

cello 457 83.9%
54.4%

male vocals 2,007 82.1%
46.8%

vocals 2,570 71.6%
38.7%

sitar 896 63.3%
14.8%

beat 2,057 60.6%
36.0%

Recall Precision

recall a remarkably good performance compared to other models. Again, the models
trained for top 80 and top 108 do not bring up any other characteristics with noteworthy
performances.

Summary

We show that overall frequently-tagged characteristics are better to learn, however it
should be noted that there are differences in learning ability among the most occurring
tags as well. Instruments like flute, cello or harpsichord achieve as good performances as
male vocals, female vocals and guitar, although they occur much less frequent. In general,
instruments achieve higher performance as compared to tempo and volume tags, like slow,
fast, loud and quiet, with respect to the frequency of occurrence. Since characteristics
are tagged in the course of music games, we have to assume that properties were not
clearly defined and brought to a common understanding beforehand. Hence, we assume
the characteristics are not annotated with the same quality and therefore it is difficult to
assess whether we observe differences in learning ability or inconsistent tagging of audio
files.
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Table 5.17: Stacked CNN - Top 10 Tags Performance

Tag Presence Performance

violin 1,579 82.9%
50.9%

cello 457 81.4%
36.0%

choir 708 80.7%
50.8%

piano 1,773 79.2%
37.7%

ambient 1,925 77.4%
17.7%

drums 2,620 70.5%
30.9%

female vocals 1,758 69.9%
69.9%

guitar 4,279 65.6%
76.7%

quiet 956 57.8%
29.1%

harpsichord 791 52.0%
92.0%

Recall Precision

An overview of the performance and the average predicted number of tags achieved against
the test set on audio file level for all models is presented in Table 5.18. We observed a
slightly lower ROC-AUC score of Short-Chunk CNN as compared to VGG-CNN, however
recall was higher and the number of predicted tags with 3.1 tags on average was also
the highest number of characteristics per song. Only in precision it has worse results to
record, but as already described, we attach less importance to this performance metric
as it involves the false positive rate. So in terms of learning semantic descriptors we
consider the Short-Chunk CNN as the best model.

5.2 Mapping between Descriptors and Genre

In this section, we explore how accurate the predicted descriptors from each descriptor
learning model, fits the ground truth genre. That is the evaluation of semantic descriptors
against genres, shown on the right side of the overview Figure 5.2. Beside the performance
of the descriptor model this evaluation is the second assessment of how well the predicted
descriptors can be used as an explanation for a genre decision. The performance of
these models show how accurate the descriptors fit the audio instances and the mapping
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5.2. Mapping between Descriptors and Genre

Table 5.18: Model Performances at Audio File Level

Model avg. Tags ROC-AUC Precision Recall

SE-CNN 1.7 87.5% 61.5% 39.6%

Short-Chunk CNN 3.1 90.0% 49.0% 58.7%

FCN 4 0.6 87.8% 64.6% 14.3%

VGG-CNN 2.6 90.4% 55.3% 54.0%

Musicnn 2.3 87.9% 49.4% 43.5%

Stacked CNN 2.2 83.4% 47.7% 39.8%

Figure 5.2: Schematic description of the relationship between individual components of
the explanation system approach

between descriptors and genre show how accurate the descriptors fit the genre. This
method of assessing an explanation for a classification decision is based on the publication
"Generating Visual Explanations" by Hendricks et al. [HAR+16], where they compare
the predicted explanations for an image classification of birds species with the definitions
of experts. Since there is no such clear definition of music genres, we use the compilation
of characteristics for the respective genres. Therefore we create a mapping between music
characteristics and genres.

5.2.1 Membership Degree Concept

It is important that the model we use for a mapping from descriptors to genres provides
a membership degree for each genre, since we are not interested in a complete decision
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Table 5.19: Descriptor - Genre Mapping Results

Model
Ground Truth Genre Recall

Affiliation (Descirptor Learning)

SE-CNN 62.8% 39.6%

Short-Chunk CNN 78.0% 58.7%

FCN 4 32.8% 14.3%

VGG-CNN 73.5% 54.0%

Musicnn 60.8% 43.5%

Stacked CNN 69.5% 39.8%

of which genre a particular set of descriptors is assigned to, but rather in a percentage
breakdown of how well a set of descriptors fits each genre.

5.2.2 Implementation
To map descriptors to genres we use a Neural Network, because they are good in pattern
recognition, and inferring genre from music characteristics based on the dataset is a
pattern recognition task. Furthermore, we can easily assess the membership degree
concept by using the softmax activation function in the output layer.

We implement a Neural Network with one hidden layer, a dropout layer and an output layer
with softmax activation. For training, we use all audio instances of the MagnaTagATune
dataset which are tagged with only one of the genres we are using in our genre classification
model and are tagged with at least three music characteristics. We use a train-test split
of 75/25. To choose the hyperparameter, we applied grid search for batch size (10, 20,
30), number of units of the hidden layer (50, 100, 200, 400) and the dropout rate (0.3, 0.4,
0.5). The best performance was achieve with batch size of 20, 200 units for the hidden
layer and a dropout rate of 0.4 with a accuracy of 80.9%.

We predict the descriptors for the 2,000 separated audio files with each descriptor learning
models and obtain the genre membership degree. In a next step, we calculate the average
membership degree to the ground truth genre.

5.2.3 Results
The average membership degree to the ground truth genre for each model, together with
the performance of the respective model is shown in Table 5.19.

As Short-Chunk CNN achieve the best performance for learning semantic descriptors, and
it also obtains the best result for the mapping model between predicted descriptors and
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5.3. Visualization of Descriptors

ground truth genres, we consider the Short-Chunk CNN as best state-of-the-art model
to learn semantic descriptors of songs and use it to show the visualization of predicted
descriptors as well as for our explanation system workflow demonstration.

5.3 Visualization of Descriptors
In this section we describe how the explanation system visualizes the predicted descriptors
in the input spectrogram.

To visualize the predicted descriptors we use Deep Taylor Decomposition (DTD), a
pixel-wise decomposition of the decision of a Deep Neural Network [BBM+15]. The
resulting decomposition shows in a heatmap how relevant parts of the input space are to
the overall decision or to a particular output neuron. DTD finds application in explaining
Deep Neural Networks, especially in image classification [MLB+17] but also has been
applied successfully in the visualization of audio features [TGT18].

To apply DTD for the visualization of the predicted descriptors, we use iNNvestigate
[ALS+19], a Python module for analysing Neural Networks.

As DTD cannot handle sigmoid activation function, we have to adjust the model to
output the values of the last layer before the sigmoid activation layer. An example for
the visualization of a descriptor is shown in Figure 5.3. The used input spectrogram
is shown in Figure 5.3a and the heatmap created by iNNvestigate is shown in Figure
5.3b. To relate the DTD heatmap to the spectrogram, we underlay the heatmap with a
grayed version of the spectrogram as shown in Figure 5.3c. Since we creat more than
one mel-spectrogram for a given audio instance to explain a genre decision, we visualize
the found descriptor on each mel-spectrogram section and merge them afterwards. This
process is explained in more detail in the following section.

5.4 Workflow and Evaluation
In this section we present the workflow of the final explanation system approach.

The first step of the explanation system is to choose an audio file for which the genre
should be predicted and the decision should be explained. The audio is loaded and
prepared for the genre classification model, which means in our case, resample to 16kHz,
create a mel-spectrogram with a window size of 1024, a hop length of 512 and 128
mel bands and cut this spectrogram in sections of size 128x128, which corresponds to
approximately 4 seconds. Then, the genre model is applied to all sections and the mostly
predicted genre is determined as the overall predicted genre.

In the next step, the explanation system prepares the audio instance for the descriptor
model, that is again, resampling the audio file to 16kHz and creating a mel-spectrogram
with a window size of 512, a hop length of 256 and 128 mel bands. Then the mel-
spectrogram is cut into 128x230 sections. Next, the descriptors are predicted for each
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5. Explaining Genre Classification with Semantic Descriptors

(a) Mel-Spectrogram (b) DTD Heatmap

(c) DTD Heatmap over Mel-Spectrogram

Figure 5.3: Visualization of the tag ’guitar’ for the song Samuel P. Huntington from The
Seldon Plan

section and stored separately, but also presented all together as the explanation for the
genre decision.

Each predicted descriptor can be selected for the visualization. For the visualization the
system goes through all mel-spectrograms and calculates the relevance heatmap for all
those mel-spectrograms where the descriptor is predicted, using the iNNvestigate module.
In a next step, all the heatmaps are merged, whereby a matrix consisting of zeros is used
as heatmap for sections where the descriptor is not predicted. On overlapping areas of
two heatmaps, the maximum values are used. The resulting merged heatmap is placed
over a gray version of the mel-spectrogram.

An overview of this process is shown in Figure 5.4, using the audio clip Sonata II from
the Ensemble Mirable. The genre decision to be explained for this example is classic,
which also corresponds to the ground truth. The explanation system generates nine
128x230 mel-spectrogram sections for which the descriptors string, flute, violin, orchestra,
harpsichord and baroque were predicted. The figure also shows that the visualization is
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5.4. Workflow and Evaluation

Figure 5.4: Overview of predicting and visualizing descriptors for a audio file

created based on the mel spectrogram sections but is merged afterwards to provide the
visualization with the same dimension as the input spectrogram.

The state-of-the-art in automatic music tagging achieves a ROC-AUC of 91% for the top
50 tags of the MagnaTagATune dataset. Taking into account that 12 of the original top
50 tags are genres, that we had to replace with less frequently occurring characteristics,
the obtained ROC-AUC of 90% for the explanation system compares well with the
state-of-the-art, which answers research question 1. Viewed as an explanatory system.
However, these values have to be considered more critically. 58.7% recall means that only
58.7% of the ground truth descriptors are recognized. Also 3.1 predicted descriptors on
average is not enough to justify a genre classification, especially if the most predictable
descriptors are instruments as well as male and female vocals, which can be representative
for any genre. Characteristics which would be more representative for genres like tempo,
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emotion and timbre perform worse, however, it can not be clearly stated if it is because
they are more complex to learn or because of the nature of the annotation of the used
dataset.
To answer research question 2 we have to consider the precision score and the affiliation
rate to the ground truth genre. The precision value of 49% is interpreted as more than
50% of the predicted descriptors being incorrect, however, since the descriptor of the genre
model shows a 78% affiliation to the ground truth genre also the predicted descriptions,
which are not annotated in the ground truth, have to fit well with the actual genre. Thus,
we can assume, that part of the supposedly incorrectly predicted descriptors actually
describe the song.
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CHAPTER 6
Assigning Semantic Descriptors to

Feature Maps

In this chapter, we investigate the extent to which it is possible to assign semantic
descriptors to feature maps generated by a CNN. Therefore, we compute the intermediate
outcome for each convolutional layer of the model to be explained and divide them into
the individual feature maps. Then, we train a model with these feature maps for a set of
songs as input and music characteristics of the songs as output. The aim of this process
is to determine if there are feature maps that perform better than others for a specific
music characteristic. This would mean that they extract the semantic information of this
music characteristic better as compared to other feature maps. As models we consider
Random Forest (RF), k-Nearest-Neighbour (k-NN) and Support Vector Machine (SVM).

6.1 Feature Maps
The information contained in a feature map is more and more finely graded after each
convolutional layer, as subsequent convolutional layers generate feature maps based on
combinations of the previous layers’ feature maps. In addition, the max-pooling layers
between the convolutional layers lead to feature maps with smaller dimensions after
each layer. The combination of convolutional layer with a max-pooling layer is called
convolutional block. The model to be explained includes three convolutional blocks. The
first generates 64 feature maps of size 64x64, the second 128 feature maps of size 32x32
and the last one 256 feature maps of size 16x16. To illustrate how feature maps change
over the layers, we show randomly selected feature maps as examples for each of the
three layers for two different songs to also illustrate how different semantics affect the
feature maps. The mel-spectrograms for the two different songs are shown in Figure 6.1,
the outcomes of the first and the second convolutional block are shown in Figure 6.2 and
the outcomes of the last block are shown in Figure 6.3.
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6. Assigning Semantic Descriptors to Feature Maps

(a) William Brooks - The Hanging of Allen
Scott Johnson

(b) The Sarasa Ensemble - Cantata Il Delirio
Amoroso - Sonata Handel

Figure 6.1: Mel-Spectrograms of two diffrent Songs

(a) The Hanging of Allen Scott Johnso - Feature
Maps generated by Convolutional Layer 1

(b) The Hanging of Allen Scott Johnso - Feature
Maps generated by Convolutional Layer 2

(c) Cantata Il Delirio Amoroso - Feature Maps
generated by Convolutional Layer 1

(d) Cantata Il Delirio Amoroso - Feature Maps
generated by Layer 2

Figure 6.2: Example Feature Maps for two different Songs, generated by the first and
second Convolutional Layer
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6.2. Data

(a) The Hanging of Allen Scott Johnso - Feature Maps
generated by Convolutional Block 3

(b) Cantata Il Delirio Amoroso - Feature Maps generated
by Convolutional Layer 3

Figure 6.3: Example Feature Maps for two different Songs, generated by the third
Convolutional Layer

6.2 Data

For this approach, we also use the MagnaTagATune dataset and make use of the pre-
processed data from 5.1.1 where synonym tags are already merged and genres are removed.
We select ten tags from the 15 most annotated tags namely guitar, string, drums, fast,
violin, piano, synthesizer, male vocals, slow and female vocals. We discard the tags beat
and ambient as they appear less expressive to us, and no vocals, vocals and singer as we
already include male vocals and female vocals. We select only those audio files that are
tagged with at least one of these ten tags, reducing the number of audio files from 18,373
to 14,492. As the most frequently occurring characteristic guitar is tagged 4,279 times
and the least frequently occurring characteristic violin is tagged only 1,579 times, we
slightly balance the data by limiting the max occurrence of tags to 3,000. Since the tags
are multi-labeled, it was not possible to balance the tags better as this would reduce the
less frequently labeled ones to the same extent. The frequency of the tags after balancing
can be seen in Table 6.1. We randomly split the data into 80% training data and 20%
test data.
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Table 6.1: Tag Occurrence in Data used for Assigning Semantic Descriptors to Feature
Maps

guitar string drums fast violin piano synthesizer male vocals slow female vocals
3,000 2,071 2,410 2,024 1,536 1,655 1,633 1,801 2,811 1,683

6.3 Model Selection
For the training of the models, we use the Python library Scikit-learn1. To select a model
that performs best for our data, we apply 3-fold cross validation. For k-Nearest-Neighbor,
in addition to the default value of k=5, we also consider k=3 and k=7. For Random
Forest, the default value for the number of trees of 100 is considered, as well as 200
and 500 trees. The Python module tqdm estimate a runtime of 52 hours for Support
Vector Machines for the intermediate outputs of the last layer, after processing the first
five of 256 iterations, where the last layer already contains the smallest amount of data.
Considering that we would have had to run the model for one setting for each layer and
thus 3 times we decided to exclude SVM.

To be able to select one model that performs best across all characteristics, we average
the F1-score across all characteristics. However, the 3-Nearest-Neighbor model achieve
the highest average F1-score, but also achieve the best F1-score for almost each individual
characteristic. Thus, we choose 3-Nearest-Neighbor as model for this approach and
trained it for the full training set and evaluated it on the test set. The detailed result of
the cross validation can be found in Appendix A.

6.4 Results
In this section, we present the best and worst performing feature maps for each charac-
teristic and visualize them for two example songs.

6.4.1 First Convolutional Layer
The highest five performances of feature maps of the first convolutional layer (see Table
6.2), shows that the feature map with index 2 is present for almost all characteristics.
Other feature maps are also present more than once, such as for example the feature
map with index 50. This can be explained by the fact, that at this point only one filter
is applied to the input for each feature map, and that there are feature maps that have
more information filtered out than others. Especially in combination with the table
showing the worst five performing feature maps (Table 6.3). One can see that after the
first convolutional layer there are already feature maps focusing on different information.
An example for this focus is the feature map with index 20, which perform quite good
with an F1-score of 29.8% for the tag guitar (see Table 6.3) but performs poor for the

1https://scikit-learn.org/
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6.4. Results

Table 6.2: Top 5 Feature Map Performance - Convolutional Layer 1
guitar

FM Acc F1
2 78.3% 33.4%
18 51.2% 31.2%
20 64.3% 29.8%
30 55.8% 29.6%
27 48.1% 28.3%

string
FM Acc F1

2 83.1% 35.9%
41 78.3% 30.4%
50 81.0% 26.2%
4 80.7% 25.8%
59 81.1% 25.6%

drums
FM Acc F1
51 73.8% 46.0%
37 72.8% 45.6%
10 69.0% 44.3%
16 70.2% 43.1%
24 76.0% 43.0%

fast
FM Acc F1
51 79.0% 45.3%
23 76.9% 43.6%
10 80.6% 43.4%
54 80.2% 43.3%
16 82.3% 42.0%

violin
FM Acc F1
41 81.7% 40.5%
2 87.8% 37.6%
15 85.3% 27.1%
50 87.0% 27.0%
48 85.6% 26.8%

piano
FM Acc F1

2 89.0% 33.5%
5 65.7% 30.1%
62 85.2% 30.0%
35 73.2% 29.6%
31 88.2% 28.6%

synthesizer
FM Acc F1
11 84.4% 23.5%
1 83.0% 23.5%
30 86.0% 23.4%
52 77.8% 23.3%
39 84.6% 23.2%

male vocals
FM Acc F1

2 86.9% 25.2%
32 82.0% 24.1%
31 86.5% 20.4%
50 86.3% 18.6%
10 86.4% 15.0%

slow
FM Acc F1
25 57.6% 39.8%
24 68.1% 39.5%
16 67.4% 39.4%
48 64.3% 39.2%
2 73.1% 38.7%

female vocals
FM Acc F1

2 87.4% 10.3%
31 87.6% 9.9%
51 87.6% 9.4%
56 86.6% 9.2%
1 87.6% 8.8%

tag violin with an F1-score of 0.6% (see Table 6.3). Similar behaviour can be observed
for other feature maps and properties. The characteristic slow achieved comparably good
performance for all feature maps, based on what we can concluded that this feature is
good to learn for a light abstraction level.

6.4.2 Second Convolutional Layer
Even though the performance of the best-performing feature maps after the second
convolutional layer, deteriorate for almost all features as compared to the first layer,
we can also see that the performances of the five worst performing feature maps are
going towards zero, which shows that the feature maps are focusing more and more
on different information. This specialization is also reflected in the fact, that after the
second convolutional layer, there is no longer a feature map that performs well for many
characteristics. The top performing feature maps for each tag are shown in Table 6.4
and the worst performing feature maps for each tag are shown in Table 6.5.

6.4.3 Third Convolutional Layer
Also for the feature maps of the third convolutional layer, we observed a deterioration
regarding the performances of the top five feature maps of each tag. However, this implies
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Table 6.3: Bottom 5 Feature Map Performance - Convolutional Layer 1
guitar

FM Acc F1
61 73.6% 16.1%
44 72.4% 15.9%
4 76.1% 15.1%
41 77.2% 14.7%
28 73.4% 10.3%

string
FM Acc F1

5 83.7% 6.0%
16 83.4% 5.0%
8 82.4% 3.5%
40 82.2% 2.6%
27 82.5% 0.9%

drums
FM Acc F1
40 79.5% 16.9%
45 79.5% 16.7%
43 79.9% 16.0%
27 81.8% 15.6%
28 78.9% 14.9%

fast
FM Acc F1
43 82.6% 16.2%
6 79.7% 15.7%
8 82.6% 15.6%
45 82.7% 15.0%
27 82.8% 8.5%

violin
FM Acc F1
11 87.7% 1.9%
21 87.6% 1.9%
40 87.1% 1.8%
20 87.5% 0.6%
27 87.2% 0.0%

piano
FM Acc F1
27 86.7% 7.8%
20 88.2% 7.6%
18 87.6% 6.6%
11 88.3% 4.6%
30 87.6% 3.7%

synthesizer
FM Acc F1
62 78.6% 13.3%
5 84.9% 12.5%
35 84.0% 9.6%
27 86.7% 6.8%
32 86.8% 6.3%

male vocals
FM Acc F1

3 85.0% 3.6%
18 86.0% 2.2%
28 85.9% 2.2%
6 85.3% 1.6%
27 85.8% 0.6%

slow
FM Acc F1
11 76.9% 30.8%
19 66.8% 30.1%
33 64.6% 29.2%
59 65.4% 29.2%
27 69.9% 21.4%

female vocals
FM Acc F1
62 87.7% 0.6%
27 87.5% 0.0%
40 87.6% 0.0%
43 87.5% 0.0%
61 87.6% 0.0%

Table 6.4: Top 5 Feature Map Performance - Convolutional Layer 2
guitar

FM Acc F1
46 51.6% 34.6%
73 63.7% 31.5%
71 76.9% 31.4%
99 76.9% 31.2%
39 43.3% 31.2%

string
FM Acc F1
10 79.5% 29.2%
3 75.2% 28.9%
80 81.4% 26.9%
97 82.3% 25.1%
81 69.2% 24.8%

drums
FM Acc F1
76 76.9% 38.9%
90 78.1% 38.7%
23 78.8% 38.0%
67 79.0% 37.9%
112 68.7% 37.9%

fast
FM Acc F1
90 80.3% 40.9%
21 79.9% 40.8%
73 78.6% 38.8%
39 79.7% 38.3%
112 76.4% 38.0%

violin
FM Acc F1
10 86.2% 36.2%
7 85.0% 28.1%
97 86.6% 24.8%
80 85.2% 24.2%
108 84.5% 23.1%

piano
FM Acc F1
65 83.4% 27.1%
83 75.6% 24.9%
93 83.2% 23.4%
63 83.4% 23.4%
32 81.7% 23.2%

synthesizer
FM Acc F1
67 83.7% 23.7%
71 81.3% 22.6%
36 83.4% 22.5%
90 82.6% 22.5%
10 83.2% 21.7%

male vocals
FM Acc F1
37 83.1% 26.5%
65 81.0% 25.2%
84 81.5% 24.8%
78 78.5% 23.2%
38 81.0% 22.8%

slow
FM Acc F1
77 63.3% 39.3%
30 63.6% 38.9%
25 67.3% 38.1%
96 61.7% 38.0%
7 66.6% 37.0%

female vocals
FM Acc F1
99 86.7% 13.1%
7 85.6% 13.0%
53 86.9% 12.8%
71 86.4% 12.0%
64 86.6% 11.7%
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Table 6.5: Bottom 5 Feature Map Performance - Convolutional Layer 2
guitar

FM Acc F1
122 77.4% 9.6%
121 75.3% 8.9%
43 73.6% 8.6%
89 76.9% 6.5%
16 77.9% 5.8%

string
FM Acc F1
86 83.3% 1.9%
11 83.2% 1.4%
45 82.9% 1.4%
95 82.8% 1.4%
8 83.8% 0.5%

drums
FM Acc F1

3 80.6% 2.8%
57 79.6% 2.7%
74 80.8% 2.4%
72 81.1% 1.7%
118 81.2% 0.8%

fast
FM Acc F1
62 81.7% 1.3%
3 81.8% 0.9%
31 81.9% 0.9%
56 82.0% 0.9%
118 82.2% 0.4%

violin
FM Acc F1

8 87.6% 0.0%
11 87.6% 0.0%
12 87.5% 0.0%
46 87.6% 0.0%
73 87.6% 0.0%

piano
FM Acc F1
39 88.5% 2.0%
11 88.2% 1.3%
86 87.6% 1.3%
12 88.2% 0.0%
73 88.4% 0.0%

synthesizer
FM Acc F1
86 85.0% 3.6%
74 86.6% 2.9%
46 87.2% 1.2%
118 87.0% 1.2%
55 86.8% 0.6%

male vocals
FM Acc F1
46 86.0% 0.6%
74 85.9% 0.6%
22 85.5% 0.6%
34 85.8% 0.0%
118 85.9% 0.0%

slow
FM Acc F1
24 79.3% 19.7%
100 78.6% 18.1%
39 77.4% 16.3%
86 80.5% 15.0%
12 77.8% 7.4%

female vocals
FM Acc F1
11 87.6% 0.0%
46 87.6% 0.0%
55 87.5% 0.0%
83 87.4% 0.0%
114 87.3% 0.0%

that the CNN abstracts more detailed information per feature map across layers, but
not in such a way that a single feature map can represent the entirety of any of our
selected semantic characteristics. The top performing feature maps produced by the
third convolutional layer are shown in Table 6.6 and the worst performing feature maps
in Table 6.7.

6.4.4 Visualization

To show how the top performing feature maps for the characteristics looks like, we
visualize the same feature maps of each convolutional layer for two different songs and
highlight the best performing feature map for the respective tagged characteristics. We
take one audio file tagged as metal (Magnatune Compilation - Pizzle in my livid eyes),
for which we highlight the characteristics guitar, drums and male vocal, and one audio file
tagged as classic (Jami Sieber - Prayer), for which we highlight the characteristics piano,
string and violin. The feature maps for the examples, generated by the first convolutional
layer are shown in Figure 6.4, those generated by the second layer are shown in Figure
6.5 and those generated by the last layer are shown Figure 6.6. In this example, one can
clearly see how the appearance of the top performing feature maps for the respective
characteristics increasingly differs across the convolutional layers.
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Table 6.6: Top 5 Feature Map Performance - Convolutional Layer 3
guitar

FM Acc F1
68 77.1% 29.6%
184 74.8% 28.5%
124 77.5% 28.4%
135 53.0% 27.9%
234 77.1% 27.4%

string
FM Acc F1
198 78.6% 29.4%
96 80.8% 28.6%
111 80.9% 24.9%
156 81.4% 24.6%
131 80.0% 22.9%

drums
FM Acc F1
57 61.1% 42.7%
78 63.9% 42.2%
215 53.2% 42.1%
24 61.3% 41.0%
18 59.5% 40.9%

fast
FM Acc F1
216 71.9% 49.2%
191 74.3% 46.6%
11 67.4% 46.3%
78 68.0% 46.0%
110 64.3% 44.6%

violin
FM Acc F1
198 83.5% 28.5%
96 84.9% 27.1%
81 85.5% 25.8%
133 85.7% 25.2%
126 85.8% 24.3%

piano
FM Acc F1
198 85.3% 33.2%
192 86.1% 26.0%
152 85.8% 24.7%
8 85.7% 23.6%
96 84.9% 23.5%

synthesizer
FM Acc F1
124 82.7% 23.7%
241 75.6% 23.6%
219 83.6% 22.4%
49 82.7% 21.8%
83 82.2% 21.6%

male vocals
FM Acc F1
205 84.0% 24.6%
124 85.3% 24.3%
95 85.7% 24.3%
219 84.8% 23.1%
128 81.3% 23.1%

slow
FM Acc F1
131 75.7% 36.1%
101 61.9% 36.0%
156 73.2% 36.0%
112 73.1% 35.9%
35 75.8% 35.6%

female vocals
FM Acc F1
185 76.0% 19.2%
1 40.0% 18.1%

182 86.3% 17.0%
253 77.2% 16.7%
206 86.3% 16.6%

(a) Magnatune compilation - Pizzle in my livid
eyes

(b) Jami Sieber - Prayer

Figure 6.4: Convolutional Layer 1 - Highlighting best performing Feature Maps
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(a) Magnatune Compilation - Pizzle in my livid
eyes

(b) Jami Sieber - Prayer

Figure 6.5: Convolutional Layer 2 - Highlighting best performing Feature Maps

(a) Magnatune compilation - Pizzle in my livid
eyes

(b) Jami Sieber - Prayer

Figure 6.6: Convolutional Layer 3 - Highlighting best performing Feature Maps
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Table 6.7: Bottom 5 Feature Map Performance - Convolutional Layer 3
guitar

FM Acc F1
1 77.0% 5.6%
10 76.6% 4.3%
53 77.5% 3.8%
245 78.6% 2.9%
20 78.9% 1.9%

string
FM Acc F1
132 82.1% 6.3%
86 80.8% 6.2%
34 81.8% 5.8%
247 82.5% 5.2%
137 81.3% 3.3%

drums
FM Acc F1
23 78.5% 5.0%
31 78.7% 3.3%
92 80.2% 3.1%
221 78.7% 2.9%
119 80.1% 2.0%

fast
FM Acc F1
12 78.7% 5.0%
1 80.7% 4.8%

239 80.1% 3.9%
97 80.0% 3.5%
18 80.7% 1.6%

violin
FM Acc F1
247 86.6% 3.5%
1 86.5% 2.3%
45 86.0% 2.2%
252 87.2% 1.2%
98 86.6% 1.2%

piano
FM Acc F1
180 86.4% 4.0%
34 86.2% 3.9%
253 85.5% 3.7%
137 87.2% 3.6%
17 86.8% 3.0%

synthesizer
FM Acc F1
18 86.4% 1.2%
141 86.4% 1.2%
165 85.7% 0.6%
20 87.3% 0.0%
53 86.8% 0.0%

male vocals
FM Acc F1
215 85.0% 1.1%
221 84.7% 1.0%
59 84.5% 1.0%
202 85.5% 0.6%
141 85.4% 0.0%

slow
FM Acc F1
154 75.3% 10.7%
144 77.1% 9.2%
122 76.8% 9.1%
89 77.8% 8.0%
245 78.3% 4.6%

female vocals
FM Acc F1
215 86.5% 1.8%
144 86.2% 1.7%
108 86.1% 1.7%
20 86.8% 1.2%
53 86.8% 1.2%

6.5 Evaluation
Due to the fact that there are feature maps performing best for one semantic descriptor,
but performing worst for other semantic descriptors shows that each feature map learned a
different semantic and that the learned semantics of an individual feature map represented
some music characteristics better than other. However, as even the best performing
feature maps for each characteristic did not achieve an F1-score above 50%, it appears
that the model being explained do not learn any specific semantic that is fully comparable
to any music characteristic we have selected. Since this is an introspective approach,
analyzing a specific model, it does not mean that this can not be the case for other
implementations of a CNN based genre classification.
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CHAPTER 7
Conclusion and Future Work

In this chapter we conclude our thesis by summarizing our findings, reviewing our initially
raised research questions and give an outlook on future work.

7.1 Conclusion
The aim of this master thesis was the explanation of a state-of-the-art CNN genre
classification model and proposed two different approaches. The first proposed approach
aims to justify a genre decision by providing music characteristics as additional information
of the classified song and covers the first two research questions.

Research question 1: To what extent can semantic descriptors be learned from audio
inputs as used for a state-of-the art CNN genre classification model?

The prediction of the semantic descriptors by our proposed explanation system achieves
a ROC-AUC of 90%, and thus competes with state-of-the-art music auto tagging in
terms of performance, which answers research question 1. However, considering that the
descriptors should serve as explanation for a genre decision, a recall of 58.7%, precision of
49% and 3.1 predicted descriptors on average is not sufficient. A detailed presentation of
the overall performance as well as performances on different tags can be found in Section
5.1.7 for all the models investigated, whereby the performance stated here refers to the
best-performing model, namely the Short-Chunk CNN.

Research question 2: To what extent are the explanations in form of semantic
descriptors, provided by the explanation system, relevant to the ground truth genre?

To answer research question 2 we proposed a Neural Network along with membership
degree concepts to map semantic descriptors to genre affiliation which is described in
Section 5.2. The precision score of 49% is interpreted as 51% of the predicted descriptors
does not match the ground truth descriptors, however, our descriptor to genre mapping
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model shows 78% affiliation to the ground truth genre for the predicted descriptions, which
leads us to the conclusion that part of the supposedly incorrectly predicted descriptors
actually describe the song.

In the second approach, semantic descriptors are used to gain introspective understanding
of a state-of-the-art genre classification model. The semantic descriptors are assigned
to the feature maps of the CNN that covers the semantic information best. For this
assignment, k-NN and Random Forest were considered, whereby the former performed
better.

Research question 3: To what extent can semantic descriptors be assigned to feature
maps of a state-of-the-art CNN genre classification model

The results of the different layers as well as the visualization of the feature maps clearly
show how the represented semantics from a feature map becomes more detailed across
the convolutional layers. We observed differences in how well feature maps can represent
particular characteristics between different feature maps, but no feature map was found
that could fully capture a characteristic. However, this approach provides a way to
improve the understanding of the convolutional layers of a genre classification model.
The five best-performing and the five worst-performing feature maps for all semantic
descriptors investigated are listed in Tables 6.2-6.7 along with the accuracy and F1 score
and are interpreted in more detail in Section 6.4.

7.2 Future Work
We introduced a justification explanation approach for CNN based music genre classifica-
tion and obtained performances similar to the state-of-the-art in the music auto-tagging
domain. However, with 3.1 predicted descriptors on average per genre classification and
additionally, mainly instruments predicted with acceptable performance, the justification
explanation approach is not yet ready to be used. Future work could investigate, if
semantic descriptors, which are sparsely or not at all annotated in the MagnaTagATune
dataset, can be learned from the Last.FM dataset. Also splitting the descriptor model
into multiple models by selecting the model with the best performance for each tag,
rather than the model with the best average performance, can be considered.

Our approach to assign semantic descriptors to feature maps generated by the convolution
layers within the genre classification model showed that some feature maps can represent
particular semantic descriptors better than others. However, we could not determine a
single feature map which fully represents a descriptor. Future work could analyse deeper
models to investigate how the feature maps evolve across more layers.

In general, a music database which is annotated less sparsely or even annotated completely
with music characteristics, such that a not annotated characteristic actually means this
characteristic is not included, could improve our approaches. Since we are not using
mel-spectrograms from the whole audio files but cut them into smaller sections, a database
with more finely granulated annotations could improve the approaches as well.
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A.1 Cross-Validation Result - Convolutional Layer 1
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A. Cross-Validation Result for Assigning Feature Maps to Descriptors
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A.3. Cross-Validation Result - Convolutional Layer 3
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A. Cross-Validation Result for Assigning Feature Maps to Descriptors
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